INVISCID FLOW Week 2

Prof. Hyungmin Park Multiphase Flow and Flow Visualization Lab.

Department of Mechanical and Aerospace Engineering Seoul National University

2017 Spring

Inviscid Flow

Basic Conservation Laws

- Two ways in which the conservation laws are derived
 - Statistical approach
 - Continuum approach
- Choice of reference frame
 - Lagrangian
 - Eulerian
- Reynolds transport theorem
- Continuity equation mass conservation
- Navier-Stokes equation momentum conservation
- Energy equation thermal energy conservation

Basic Conservation Laws – Approach

- o Approaches to derive governing equations in fluids
 - Molecular approach (statistical method)
 - The motion of molecule follows the laws of dynamics
 - Assumption: the macroscopic phenomena arise from the molecular motion of the molecules
 - The theory attempts to predict the macroscopic behavior of the fluid from the laws of mechanics and probability theory
 - Incomplete for dense gases and for liquids
 - Continuum approach
 - Assumption: the mean-free-path of the molecule is much smaller than the smallest physical length scale of the flow phenomena
 - Most of phenomena encountered in fluid mechanics fall well within the continuum domain and may involve liquids as well as gases

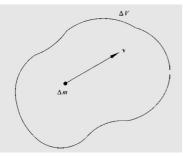
2017 Spring

Inviscid Flow

3

Basic Conservation Laws – Continuum method

- o Validity of Continuum Concept
 - Field variables, e.g., density (ρ) and velocity (u) is a function of space and time: ρ = ρ(x,t), u = u(x,t)
 - defined in terms of the properties of the various molecules that occupy a small volume (ΔV) in the neighborhood of that point



 Δm : mass of individual molecule V: velocity of individual molecule

$$\rho = \lim_{\Delta V \to \varepsilon} \left(\frac{\sum \Delta m}{\Delta V} \right)$$
$$u = \lim_{\Delta V \to \varepsilon} \left(\frac{\sum v \Delta m}{\sum \Delta m} \right)$$

 ϵ is a volume which is sufficiently small that $\epsilon^{1/3}$ is small compared with the smallest significant length scale in the flow field but is sufficiently large that it contains a large number of molecules.

Basic Conservation Laws – Continuum method

• A sufficient condition, not a necessary condition, for the valid continuum approach

$$\frac{1}{n} << \varepsilon << L^3$$
• n: # of molecules per unit volume
• L: smallest length scale with a significant physical meaning
(macroscopic length scale)

- Example
 - -~ A cube (2 $\mu m \times$ 2 $\mu m \times$ 2 μm) of gas (at normal temperature and pressure) contains about 2 \times 10⁸ molecules and 2 \times 10¹¹ molecules for a liquid
 - Continuum condition is readily met in the vast majority of flow phenomena encountered in physics and engineering
- In continuum approach: the deformation should be proportional to the stress!

2017 Spring

Inviscid Flow

5

Basic Conservation Laws – Reference Frame

- Choice of the Reference Frame
 - Eulerian
 - Lagrangian
- o Eulerian
 - Independent variables: x, y, z and t (time)
 - Focusing on the fluid which passes through a control volume, fixed in space
- \circ Lagrangian
 - Independent variables: x_0 , y_0 , z_0 and t (location of a fluid element at t_0)
 - Attention is fixed on a particular mass (material volume) of fluid as it flows
- Lagrangian coordinate system tends to be used to derive the basic conservation equations; but the eulerian system is the preferred for solving the majority of problems

Basic Conservation Laws – Reference Frame

- Material Derivative (Total Derivative)
 - Let α be any variable in a fluid field;
 - For a short time (δt), the change in α is

$$\delta \alpha = \frac{\partial \alpha}{\partial t} \delta t + \frac{\partial \alpha}{\partial x} \delta x + \frac{\partial \alpha}{\partial y} \delta y + \frac{\partial \alpha}{\partial z} \delta z$$

- In Lagrangian coordinate, where x, y, z is the function of time

$$\left(\frac{\delta\alpha}{\delta t}\right) = \frac{\partial\alpha}{\partial t} + \frac{\partial\alpha}{\partial x}\frac{\delta x}{\delta t} + \frac{\partial\alpha}{\partial y}\frac{\delta y}{\delta t} + \frac{\partial\alpha}{\partial z}\frac{\delta z}{\delta t}$$

− As $\delta t \rightarrow 0$, we have

$\frac{D\alpha}{Dt} =$	$=\frac{\partial \alpha}{\partial t}+$	$u\frac{\partial \alpha}{\partial x} +$	$v\frac{\partial\alpha}{\partial y} +$	$w \frac{\partial \alpha}{\partial z}$
$=\frac{\partial\alpha}{\partial t}$	$+(u\cdot\nabla$	$(7)\alpha = \frac{\hat{c}}{\hat{c}}$	$\frac{\partial \alpha}{\partial t} + u_k$	$\frac{\partial \alpha}{\partial x_k}$

→ Expresses the lagrangian rate of change $D\alpha/Dt$ of α for a given fluid element in terms of the eulerian derivatives $\partial \alpha/\partial t$ and $\partial \alpha/\partial x_k$.

Local derivative + Convective derivative

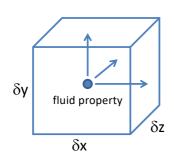
2017 Spring

Inviscid Flow

7

Basic Conservation Laws – Control Volume

o Control Volumes



• Fluid property is expanded in a Taylor series to give expressions for that property at each face of the control volume

$$f(a) + \frac{f'(a)}{1!}(x-a) + \frac{f''(a)}{2!}(x-a)^2 + \frac{f^{(3)}(a)}{3!}(x-a)^3 + \dots$$

- Then, the conservation law is applied with (δx , δy and $\delta z \rightarrow 0$): differential equations
- Arbitrary Shaped CV
 - Each conservation principle is applied to an integral over the control volume

$$\int_{V} L\alpha dV = 0$$

$$\sum_{V} L\alpha dV = 0$$

Basic Conservation Laws – Control Volume

- Since the CV is arbitrary, the only way to solve this equation is to set $L\alpha = 0$, which gives the differential equation of the conservation law
- Needless to say that the results obtained by the two methods are identical

2017 Spring

Inviscid Flow

9

Basic Conservation Laws – Reynolds Transport Theorem

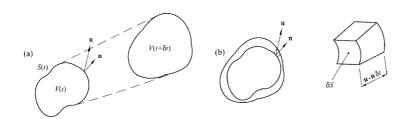
- What we want to do is
 - Derive the basic equations from the conservation laws by using the continuum concept and following an arbitrarily shaped control volume in a lagrangian frame of reference
 - Material derivatives of volume integrals
 - It is necessary to transform such terms into equivalent expressions involving volume integrals of eulerian derivatives: Reynolds transport theorem.
- \circ Consider a specific mass of fluid and follow it for a short period of time (δt) as it flows. And, let α be any property of the fluid.
 - quantity α will be a function of t only as the control volume moves with the fluid: α = $\alpha(t)$

Basic Conservation Laws – Reynolds Transport Theorem

 $\circ~$ Rate of change of the integral of $\alpha~$

$$\frac{D}{Dt} \int_{V(t)} \alpha(t) dV = \lim_{\delta t \to 0} \left\{ \frac{1}{\delta t} \left[\int_{V(t+\delta t)} \alpha(t+\delta t) dV - \int_{V(t)} \alpha(t) dV \right] \right\}$$
$$= \lim_{\delta t \to 0} \left\{ \frac{1}{\delta t} \left[\int_{V(t+\delta t)} \alpha(t+\delta t) dV - \int_{V(t)} \alpha(t+\delta t) dV + \int_{V(t)} \alpha(t+\delta t) dV - \int_{V(t)} \alpha(t) dV \right] \right\}$$
$$= \lim_{\delta t \to 0} \left\{ \frac{1}{\delta t} \left[\int_{V(t+\delta t)-V(t)} \alpha(t+\delta t) dV \right] \right\} + \int_{V(t)} \frac{\partial \alpha}{\partial t} dV$$

Let's look into this term!



- The perpendicular distance from any point on the inner surface to the outer surface is $u \cdot n \delta t$, so that an element of surface area δS will correspond to an element of volume change δV
- $\delta V = u \cdot n \delta t \delta S$.

2017 Spring

Inviscid Flow

11

Basic Conservation Laws – Reynolds Transport Theorem

$$\lim_{\delta t \to 0} \left\{ \frac{1}{\delta t} \left[\int_{V(t+\delta t)-V(t)} \alpha(t+\delta t) dV \right] \right\} = \lim_{\delta t \to 0} \left\{ \left[\int_{S(t)} \alpha(t+\delta t) u \cdot n dS \right] \right\}$$
$$\frac{D}{Dt} \int_{V(t)} \alpha(t) dV = \int_{S(t)} \alpha(t) u \cdot n dS + \int_{V(t)} \frac{\partial \alpha}{\partial t} dV$$

- Now, the lagrangian derivative of a volume integral has been converted into a surface integral and a volume integral in which the integrands contain only eulerian derivatives
- On the other hand, from Gauss Theorem (or divergence Theorem),

$$\int_{S(t)} \alpha(t) u \cdot n dS = \int_{V(t)} \nabla \cdot (\alpha u) dV$$

Gauss Theorem: outward flux of a vector field through a closed surface is equal to the volume integral of the divergence over the region inside the surface. Intuitively, it states that *the sum of all sources minus the sum of all sinks gives the net flow out of a region*.

Basic Conservation Laws – Reynolds Transport Theorem

$$\frac{D}{Dt}\int_{V}\alpha dV = \int_{V}\left[\frac{\partial\alpha}{\partial t} + \nabla \cdot (\alpha u)\right] dV = \int_{V}\left[\frac{\partial\alpha}{\partial t} + \frac{\partial}{\partial x_{k}}(\alpha u_{k})\right] dV$$

 Now, the lagrangian derivative of a volume integral of a given mass has been related to a volume integral in which the integrand has eulerian derivatives only.

2017 Spring

Inviscid Flow

13

Basic Conservation Laws – Conservation of Mass

- Consider an arbitrarily chosen, specific mass of fluid (volume V)
- If this given fluid mass is followed as it flows, its size and shape will be observed to change but its mass will remain unchanged: Mass Conservation
- Mathematically, lagrangian derivative D/Dt of the mass of fluid contained in V is equal to zero

$$\frac{D}{Dt}\int_{V}\rho dV=0$$

• Using Reynolds Transport Theorem,

$$\int_{V} \left[\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_{k}} (\rho u_{k}) \right] dV = 0$$

• Since V is arbitrarily chosen,

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_k} (\rho u_k) = 0 \quad \text{Continuity Equation}$$

Basic Conservation Laws – Conservation of Mass

 In incompressible flow, where the variation of density of the fluid is ignored, the density will remain constant as well as the mass

$$\frac{D\rho}{Dt} = 0$$

• To use this,

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_k} (\rho u_k) = \frac{\partial \rho}{\partial t} + u_k \frac{\partial \rho}{\partial x_k} + \rho \frac{\partial u_k}{\partial x_k} = 0$$

$$\therefore \frac{D\rho}{Dt} + \rho \frac{\partial u_k}{\partial x_k} = 0$$

Lagrangian+Eulerian \rightarrow not useful for solving fluid-mechanics problem, but frequently used form due to its simplicity

 \circ $\,$ In incompressible flow, the continuity equation becomes

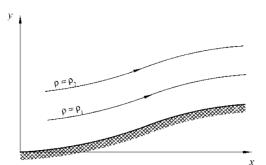
$$\frac{\partial u_k}{\partial x_k} = 0$$
 Also valid for stratified fluid in ocean or atmosphere

2017 Spring

Inviscid Flow

15

Basic Conservation Laws – Conservation of Mass



- In a stratified fluid, ρ is not constant everywhere, so that $\partial \rho / \partial x \neq 0$ and $\partial \rho / \partial y \neq 0$.
- A fluid particle that follows the lines $\rho = \rho_1$ or $\rho = \rho_2$ will have its density remain fixed so that $D\rho/Dt = 0$, in the Lagrangian viewpoint.
- Most of the time, however, we deal with the incompressible flow

Basic Conservation Laws – Conservation of Momentum

Newton's Second Law

- the rate at which the momentum of the fluid mass is changing is equal to the net external force acting on the mass
 - Body force: gravitational, electromagnetic

$$\int_V
ho f dV$$
 (f: body force per unit mass)

Surface force: pressure, viscous stress

 $\int_{S} P dS$ (P: pressure force per unit area)

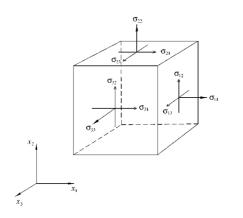
 $- \frac{D}{Dt} \int_{V} \rho u dV = \int_{S} P dS + \int_{V} \rho f dV$ General form of momentum conservation

2017 Spring

Inviscid Flow

17

Basic Conservation Laws – Conservation of Momentum



- The stress acting on any point has nine components and can be represented by σ_{ii} (i, j = 1, 2, 3). That is, it is acting on the x_i-plane and the second subscript indicates that it acts in the x_i-direction.
- o Rank 2 tensor
- Consider surface pressure force, P
- At x₁-plane, for example, $P_1 = \sigma_{11}n_1$, $P_2 =$ $\sigma_{12}n_1$, $P_3 = \sigma_{13}n_1$ (n_1 is unit normal vectors)

• Then,
$$P_j = \sigma_{ij}n_i$$

$$\therefore \frac{D}{Dt} \int_{V} \rho u_{j} dV = \int_{S} \sigma_{ij} n_{i} dS + \int_{V} \rho f_{j} V$$

Basic Conservation Laws – Conservation of Momentum

o Using Reynolds Transfer Theorem,

$$\frac{D}{Dt}\int_{V}\rho u_{j}dV = \int_{V}\left[\frac{\partial}{\partial t}(\rho u_{j}) + \frac{\partial}{\partial x_{k}}(\rho u_{j}u_{k})\right]$$

• Using Gauss Theorem,

$$\int_{S} \sigma_{ij} n_i dS = \int_{V} \frac{\partial \sigma_{ij}}{\partial x_i} dV$$

 Therefore, in the form of tensor, the momentum conservation equation becomes

$$\frac{\partial}{\partial t}(\rho u_{j}) + \frac{\partial}{\partial x_{k}}(\rho u_{j}u_{k}) = \frac{\partial \sigma_{ij}}{\partial x_{i}} + \rho f_{j}$$

$$\rho \frac{\partial u_{j}}{\partial t} + u_{j}\frac{\partial \rho}{\partial t} + u_{j}\frac{\partial}{\partial x_{k}}(\rho u_{k}) + \rho u_{k}\frac{\partial u_{j}}{\partial x_{k}} = \frac{\partial \sigma_{ij}}{\partial x_{i}} + \rho f_{j}$$

Zero from a continuity equation

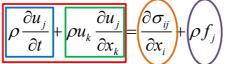
2017 Spring

Inviscid Flow

19

Basic Conservation Laws – Conservation of Momentum

o So, we have



rate of change of momentum of a unit volume of the fluid (or the inertia force per unit volume)

temporal acceleration term

convective acceleration (nonlinear)

Gradient of surface shear stress

Body force

Convection?