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2017 Spring Inviscid Flow

Basic Conservation Laws
o Two ways in which the conservation laws are derived

– Statistical approach
– Continuum approach

o Choice of reference frame
– Lagrangian
– Eulerian

o Reynolds transport theorem
o Continuity equation – mass conservation
o Navier-Stokes equation – momentum conservation
o Energy equation – thermal energy conservation
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2017 Spring Inviscid Flow

Basic Conservation Laws – Approach
o Approaches to derive governing equations in fluids

– Molecular approach (statistical method)
• The motion of molecule follows the laws of dynamics
• Assumption: the macroscopic phenomena arise from the 

molecular motion of the molecules
• The theory attempts to predict the macroscopic behavior of the 

fluid from the laws of mechanics and probability theory
• Incomplete for dense gases and for liquids

– Continuum approach
• Assumption: the mean-free-path of the molecule is much smaller 

than the smallest physical length scale of the flow phenomena
• Most of phenomena encountered in fluid mechanics fall well 

within the continuum domain and may involve liquids as well as 
gases
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2017 Spring Inviscid Flow

Basic Conservation Laws – Continuum method
o Validity of Continuum Concept

– Field variables, e.g., density (r) and velocity (u) is a function of space 
and time: r = r(x,t), u = u(x,t)
• defined in terms of the properties of the various molecules that 

occupy a small volume (DV) in the neighborhood of that point 
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Dm: mass of individual molecule
V: velocity of individual molecule
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• e is a volume which is sufficiently small that e1/3

is small compared with the smallest significant 
length scale in the flow field but is sufficiently 
large that it contains a large number of 
molecules.
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Basic Conservation Laws – Continuum method
o A sufficient condition, not a necessary condition, for the valid continuum 

approach

o Example

– A cube (2 µm ´ 2 µm ´ 2 µm) of gas (at normal temperature and 
pressure) contains about 2 ´ 108 molecules and 2 ´ 1011 molecules for 
a liquid

– Continuum condition is readily met in the vast majority of flow 
phenomena encountered in physics and engineering

o In continuum approach: the deformation should be proportional to the 
stress!
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• n: # of molecules per unit volume
• L: smallest length scale with a significant physical meaning

(macroscopic length scale)

2017 Spring Inviscid Flow

Basic Conservation Laws – Reference Frame
o Choice of the Reference Frame

– Eulerian
– Lagrangian

o Eulerian
– Independent variables: x, y, z and t (time)
– Focusing on the fluid which passes through a control volume, fixed in 

space
o Lagrangian

– Independent variables: x0, y0, z0 and t (location of a fluid element at t0)
– Attention is fixed on a particular mass (material volume) of fluid as it 

flows
o Lagrangian coordinate system tends to be used to derive the basic 

conservation equations; but the eulerian system is the preferred for solving 
the majority of problems
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2017 Spring Inviscid Flow

Basic Conservation Laws – Reference Frame
o Material Derivative (Total Derivative)

– Let a be any variable in a fluid field;
– For a short time (dt), the change in a is

– In Lagrangian coordinate, where x, y, z is the function of time

– As dt à0, we have
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à Expresses the lagrangian rate of 
change Da/Dt of a for a given fluid 
element in terms of the eulerian
derivatives ¶a/¶t and ¶a/¶xk.

Local derivative + Convective derivative

2017 Spring Inviscid Flow

Basic Conservation Laws – Control Volume
o Control Volumes

o Arbitrary Shaped CV
– Each conservation principle is applied to an integral over the control 

volume
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fluid property

• Fluid property is expanded in a Taylor series to give 
expressions for that property at each face of the 
control volume

• Then, the conservation law is applied with (dx, dy 
and dz à 0): differential equations
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L: differential operator
a: fluid property
V: volume of arbitrary CV
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Basic Conservation Laws – Control Volume
– Since the CV is arbitrary, the only way to solve this equation is to set 

La = 0, which gives the differential equation of the conservation law

– Needless to say that the results obtained by the two methods are 
identical
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2017 Spring Inviscid Flow

Basic Conservation Laws – Reynolds Transport Theorem

o What we want to do is
– Derive the basic equations from the conservation laws by using the 

continuum concept and following an arbitrarily shaped control volume 
in a lagrangian frame of reference

– Material derivatives of volume integrals
– It is necessary to transform such terms into equivalent expressions 

involving volume integrals of eulerian derivatives: Reynolds transport 
theorem.

o Consider a specific mass of fluid and follow it for a short period of time 
(dt) as it flows. And, let a be any property of the fluid.
– quantity a will be a function of t only as the control volume moves 

with the fluid: a = a(t)
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Basic Conservation Laws – Reynolds Transport Theorem

o Rate of change of the integral of a
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• The perpendicular distance 

from any point on the 
inner surface to the outer 
surface is u×ndt, so that an 
element of surface area dS 
will correspond to an 
element of volume change 
dV

• dV = u×ndtdS.

Let’s look into this term!

2017 Spring Inviscid Flow

Basic Conservation Laws – Reynolds Transport Theorem

o Now, the lagrangian derivative of a volume integral has been converted 

into a surface integral and a volume integral in which the integrands 

contain only eulerian derivatives

o On the other hand, from Gauss Theorem (or divergence Theorem),
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Gauss Theorem: outward flux of a vector field through a closed surface is equal to 

the volume integral of the divergence over the region inside the surface. Intuitively, 

it states that the sum of all sources minus the sum of all sinks gives the net flow out 
of a region.
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Basic Conservation Laws – Reynolds Transport Theorem

o Now, the lagrangian derivative of a volume integral of a given mass has 
been related to a volume integral in which the integrand has eulerian
derivatives only.
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2017 Spring Inviscid Flow

Basic Conservation Laws – Conservation of Mass
o Consider an arbitrarily chosen, specific mass of fluid (volume V)

o If this given fluid mass is followed as it flows, its size and shape will be 
observed to change but its mass will remain unchanged: Mass Conservation

o Mathematically, lagrangian derivative D/Dt of the mass of fluid contained in 
V is equal to zero

o Using Reynolds Transport Theorem,

o Since V is arbitrarily chosen,
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2017 Spring Inviscid Flow

Basic Conservation Laws – Conservation of Mass
o In incompressible flow, where the variation of density of the fluid is 

ignored, the density will remain constant as well as the mass

o To use this,

o In incompressible flow, the continuity equation becomes 
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Also valid for stratified fluid in ocean 
or atmosphere

2017 Spring Inviscid Flow

Basic Conservation Laws – Conservation of Mass

o Most of the time, however, we deal with the incompressible flow
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• In a stratified fluid, r is not constant 
everywhere, so that ¶r/¶x ¹ 0 and ¶r/¶y ¹ 0.

• A fluid particle that follows the lines r = r1 or 
r = r2 will have its density remain fixed so 
that Dr/Dt = 0, in the Lagrangian viewpoint.
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Basic Conservation Laws – Conservation of Momentum

o Newton’s Second Law
– the rate at which the momentum of the fluid mass is changing is equal 

to the net external force acting on the mass

–
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• Body force: gravitational, electromagnetic

• Surface force: pressure, viscous stress

V fdVrò

S PdSò

(f: body force per unit mass)

(P: pressure force per unit area)

V S V
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Dt
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2017 Spring Inviscid Flow

Basic Conservation Laws – Conservation of Momentum

o The stress acting on any point has nine 
components and can be represented by 
sij (i, j = 1, 2, 3). That is, it is acting on 
the xi-plane and the second subscript 
indicates that it acts in the xj-direction.

o Rank 2 tensor
o Consider surface pressure force, P
o At x1-plane, for example, P1 = s11n1, P2 = 

s12n1, P3 = s13n1 (n1 is unit normal 
vectors)

o Then, Pj = sijni
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Basic Conservation Laws – Conservation of Momentum

o Using Reynolds Transfer Theorem,

o Using Gauss Theorem,

o Therefore, in the form of tensor, the momentum conservation equation 
becomes
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Zero from a continuity equation
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Basic Conservation Laws – Conservation of Momentum

o So, we have
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rate of change of momentum of a unit volume of the 
fluid (or the inertia force per unit volume)
temporal acceleration term
convective acceleration (nonlinear)

Convection?

Gradient of surface shear stress
Body force


