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2017 Spring Inviscid Flow

_ws — Conservation of Momentum

o Conservation of Angular Momentum

— the rate at which the angular momentum of the fluid mass is changing
is equal to the net external moment acting on the mass
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o Another representation of Reynolds Transport Theorem
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_aws — Conservation of Momentum

o LHS of angular mtm conservation eqn
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_aws — Conservation of Momentum

o First term in RHS of angular mtm conservation eqn
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Divergence Theorem
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o Clear the egn (*), then we get
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_LaWS — Conservation of Momentum
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o So, we can prove the symmetry of shear stress at a point using the
conservation of angular momentum
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_Laws — Conservation of Energy

o 15t Law of Thermodynamics
— dE =38W +8Q (change in internal energy = total work done on the
system + heat added to the system)

— Valid for equilibrium (fixed) state

o In case of fluid flow, not in equilibrium
— e;=e+ 1/2u-u (total energy per unit mass = internal energy per unit
mass + kinetic energy per unit mass)

o Modified 15t Law of Thermodynamics

— rate of change of the total energy (internal+ kinetic) of the fluid as it
flows is equal to the sum of the rate at which work is being done on
the fluid by external forces and the rate at which heat is being added

by conduction
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_aws — Conservation of Energy
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Reynolds Transport Theorem
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_aws — Conservation of Energy
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o Let’s simply this eqn further (LHS first)
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o Combining the two above, then we have
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Laws — Conservation of Energy
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o Now, the first term at RHS becomes
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o So, the basic energy conservation eqn becomes
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_ Laws — Conservation of Energy
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o The LHS: the rate of change of internal energy

— the first term: temporal change

— the second term: local convective changes, caused by the fluid flowing
from one area to another.

o The RHS: the cause of the change in internal energy

— the first term: reversible and/or irreversible conversion of mechanical
energy into thermal energy due to surface stresses

— the second term: the rate at which heat is being added by conduction
from outside
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_Laws — Further Discussion
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o The continuity and the energy equations are scalar equations

o The momentum equation is a vector equation which represents three scalar
equations

o Two state equations may be added, i.e., p=p(P, T)and e =¢(P, T)

o Unknowns: p, e, uj, q;, oy, total 17 (14 if we consider the symmetry of ;)

o To obtain a complete set of equations, ¢;; and g; must be further specified. This
leads to the so-called constitutive equations in which the stress tensor is

related to the deformation tensor (Navier-Stoke Eqn) and the heat-flux vector
is related to temperature gradients (Fourier’s Law).
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o Proved the symmetry of stress tensor from angular momentum
conservation

o From the modified 1% law of thermodynamics, thermal energy
conservation equation was derived

o Brief summary of governing equations derived so far
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o Solution for homework #1 has been uploaded.
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_aws — Rotation and Rate of Shear

o Let’s identify the tensor quantities that represent rotation and shearing of

the fluid element
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_aws — Rotation and Rate of Shear

o Expanding v in a Taylor series about (0,0);
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_aws — Rotation and Rate of Shear

o Then, the rate of clockwise rotation of the fluid element about its centroid
is given by

L sy Lfou_ov
s-0=3(5 %)

o Likewise, the shearing can be analyzed by the motion of B'C’ and D’C’
(approaching each other)

l(ﬂ +a) = l 8_u + @
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o Extending to the general coordinate system
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_aws — Rotation and Rate of Shear

o These two tensors are actually the anti-symmetric and symmetric parts of
another tensor called the deformation-rate tensor, e;
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_ Laws — Constitutive Equations

o Now, we will find a relation between c;; and e
o In a Newtonian Fluid (air, water..... most of fluid),
— (1) When the fluid is at rest, the stress is hydrostatic and the pressure
exerted by the fluid is a thermodynamic pressure
o, =—po; +1,

thermodynamic pressure  Shear-stress tensor

— (2) Stress tensor oj; is linearly related to the deformation-rate tensor
e and depends only on it

— (3) Since there is no shearing action in a solid-body rotation of the
fluid, no shear stresses will act during such a motion

— (4) There are not preferred directions in the fluid, so that the fluid
properties are point functions
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_ Laws — Constitutive Equations

From condition (2), 7; ¢ €y
Each nine components in t; should be a linear combination of the nine
elements of e

o So, we need a tensor of rank 4 to have a general form of

. g ou,
ij o ikl
Oox,
o Now, to satisfy condition (3), i.e., solid body rotation, 7; =0
_ o 1[0, oy 1{ou, ou |_
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— For solid-body rotation, first term is not zero definitely. Therefore we
have , 1(ou, oOu
+
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Laws — Constitutive Equations

1 ou, oy,
;= i T
72 ox,  ox,

o Still, 81 components of B is still unknown.

Let’s consider condition (4), i.e., condition of isotropy: results obtained
should be independent of the orientation of the coordinate system

o By = 100k + LSOy + 8;;k) + v(did; - 8;;): most general form of isotropic
tensor of rank 4 (Appendix B, Currie)

o From condition (3), B; should be symmetric > y=0
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_ Laws — Constitutive Equations

%/15’75" g&+8u, _Ma_ « Thus, the nine el f th
x,  Ox, 7 ox, us, the nine elements of the
stress tensor o; have now been
l,tlé" 5, auk “1 _ l expressed in terms of the pressure
2 ﬁxl xk 2 and the velocity gradients and two
coefficients A and .
48,5, Ouy Gu, 6_ 8_u * A and p must be determined
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o The second constitutive relation involves ¢;and conduction: Fourier’s law
oT

=—k— k: thermal conductivity

Ox .

J
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