INVISCID FLOW Week 4

Prof. Hyungmin Park
Multiphase Flow and Flow Visualization Lab.

Department of Mechanical and Aerospace Engineering
Seoul National University

2017 Spring

Inviscid Flow

Basic Conservation Laws – Viscosity Coefficients

- $\circ~$ Let's find a physical meaning of two parameters, λ and μ
- Consider a simple shear flow in a incompressible fluid where the velocity is defined as u = u(y) and v = w = 0.

$$\sigma_{ij} = -p\delta_{ij} + \lambda\delta_{ij}\frac{\partial u_k}{\partial x_k} + \mu\left(\frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j}\right)$$

$$\sigma_{12} = \sigma_{21} = \mu\frac{du}{dy}$$

$$\sigma_{11} = \sigma_{22} = \sigma_{33} = -p$$

$$\sigma_{13} = \sigma_{31} = \sigma_{23} = \sigma_{32} = 0$$

- \circ from Newton's law of viscosity, the proportionality factor (µ) between the shear stress and the velocity gradient in a simple shear flow is the dynamic viscosity
 - Kinematic viscosity $\upsilon = \mu/\rho$

Basic Conservation Laws – Viscosity Coefficients

- \circ λ is usually referred as a second viscosity coefficient
- Let's consider the average of normal stress components as

$$-\bar{p} = \frac{1}{3}(\sigma_{11} + \sigma_{22} + \sigma_{33})$$

- This is mechanical pressure, i.e., coming from hydrostatics and/or from the motion of a fluid
- Different from the thermodynamic pressure
- $-\sigma_{ii}$ = trace of σ

$$-\overline{p} = -p + \lambda \frac{\partial u_k}{\partial x_k} + \frac{2}{3} \mu \frac{\partial u_k}{\partial x_k} = -p + (\lambda + \frac{2}{3} \mu) \frac{\partial u_k}{\partial x_k}$$

 Difference between the thermodynamic pressure and the mechanical pressure is proportional to the divergence of the velocity vector

2017 Spring Inviscid Flow 3

Basic Conservation Laws – Viscosity Coefficients

$$p - \overline{p} = (\lambda + \frac{2}{3}\mu) \frac{\partial u_k}{\partial x_k} = K \frac{\partial u_k}{\partial x_k}$$
 K: bulk viscosity

- O What is bulk viscosity?
 - mechanical pressure is a measure of the translational energy of the molecules only
 - thermodynamic pressure is a measure of the total energy, which includes vibrational and rotational modes of energy as well as the translational mode
 - in a flow field, it is possible to have energy transferred from one mode to another
 - bulk viscosity is a measure of this transfer of energy from the translational mode to the other modes
 - If the fluid is a monatomic gas, the only mode of molecular energy is the translational mode. Then, the mechanical pressure and thermodynamic pressure are the same: $\lambda = -\frac{2}{3}\mu$ Stoke's relation

Basic Conservation Laws - Navier-Stokes Equation

$$\rho \frac{\partial u_j}{\partial t} + \rho u_k \frac{\partial u_j}{\partial x_k} = \frac{\partial \sigma_{ij}}{\partial x_i} + \rho f_j \qquad \sigma_{ij} = -p \delta_{ij} + \lambda \delta_{ij} \frac{\partial u_k}{\partial x_k} + \mu \left(\frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j} \right)$$

 ○ Momentum conservation eqn + Newtonian fluid constitutive eqn → Navier-Stokes Eqn

$$\frac{\partial \sigma_{ij}}{\partial x_{i}} = \frac{\partial}{\partial x_{i}} \left[-p \delta_{ij} + \lambda \delta_{ij} \frac{\partial u_{k}}{\partial x_{k}} + \mu \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right) \right]
= -\frac{\partial p}{\partial x_{j}} + \frac{\partial}{\partial x_{j}} \left(\lambda \frac{\partial u_{k}}{\partial x_{k}} \right) + \frac{\partial}{\partial x_{i}} \left[\mu \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right) \right]
\rho \frac{\partial u_{j}}{\partial t} + \rho u_{k} \frac{\partial u_{j}}{\partial x_{k}} = -\frac{\partial p}{\partial x_{j}} + \frac{\partial}{\partial x_{j}} \left(\lambda \frac{\partial u_{k}}{\partial x_{k}} \right) + \frac{\partial}{\partial x_{i}} \left[\mu \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right) \right] + \rho f_{j}$$

2017 Spring Inviscid Flow 5

Basic Conservation Laws - Navier-Stokes Equation

o In incompressible (constant density) and constant viscosity flow,

$$\rho \frac{\partial u_{j}}{\partial t} + \rho u_{k} \frac{\partial u_{j}}{\partial x_{k}} = -\frac{\partial p}{\partial x_{j}} + \frac{\partial}{\partial x_{j}} \left(\lambda \frac{\partial u_{k}}{\partial x_{k}} \right) + \frac{\partial}{\partial x_{i}} \left[\mu \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right) \right] + \rho f_{j}$$

$$\frac{\partial}{\partial x_{i}} \left[\mu \left(\frac{\partial u_{i}}{\partial x_{j}} + \frac{\partial u_{j}}{\partial x_{i}} \right) \right] = \mu \left[\frac{\partial}{\partial x_{j}} \left(\frac{\partial u_{i}}{\partial x_{i}} \right) + \frac{\partial^{2} u_{j}}{\partial x_{i} \partial x_{i}} \right] = \mu \frac{\partial^{2} u_{j}}{\partial x_{i} \partial x_{i}}$$

$$\rho \frac{\partial u_j}{\partial t} + \rho u_k \frac{\partial u_j}{\partial x_k} = -\frac{\partial p}{\partial x_j} + \mu \frac{\partial^2 u_j}{\partial x_i \partial x_i} + \rho f_i$$

o If we can ignore the effect of viscosity,

$$\rho \frac{\partial u_j}{\partial t} + \rho u_k \frac{\partial u_j}{\partial x_k} = -\frac{\partial p}{\partial x_j} + \rho f_i \qquad \text{Euler Equation } \rightarrow \text{Inviscid Flow}$$

2017 Spring Inviscid Flow 6

Basic Conservation Laws – Energy Equations

o The first term at RHS of energy conservation eqn,

$$\rho \frac{\partial e}{\partial t} + \rho u_k \frac{\partial e}{\partial x_k} = \sigma_{ij} \frac{\partial u_j}{\partial x_i} + \frac{\partial q_j}{\partial x_j}$$
Work done by the surface stresses
$$\sigma_{ij} \frac{\partial u_j}{\partial x_i} = \left[-p \delta_{ij} + \lambda \delta_{ij} \frac{\partial u_k}{\partial x_k} + \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right] \frac{\partial u_j}{\partial x_i}$$

$$= \left(-p \frac{\partial u_k}{\partial x_k} \right) + \lambda \left(\frac{\partial u_k}{\partial x_k} \right)^2 + \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \frac{\partial u_j}{\partial x_i}$$
The provided HTML representation of energy due to compression Dissipation function, Φ

2017 Spring Inviscid Flow 7

Basic Conservation Laws – Energy Equations

$$\Phi = \lambda \left(\frac{\partial u_k}{\partial x_k} \right)^2 + \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \frac{\partial u_j}{\partial x_i}$$

- This is a measure of the rate at which mechanical energy is being converted into thermal energy → Dissipation function
- o For an incompressible flow,

$$\begin{split} &\Phi = \mu \Bigg(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \Bigg) \frac{\partial u_j}{\partial x_i} \\ &= \mu \Bigg(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \Bigg) \Bigg[\frac{1}{2} \Bigg(\frac{\partial u_j}{\partial x_i} - \frac{\partial u_i}{\partial x_j} \Bigg) + \frac{1}{2} \Bigg(\frac{\partial u_j}{\partial x_i} + \frac{\partial u_i}{\partial x_j} \Bigg) \Bigg] \\ &= \frac{1}{2} \mu \Bigg(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \Bigg)^2 \qquad \Rightarrow \text{Positive definite} \Rightarrow \text{dissipation function always works to increase irreversibly the internal energy of an incompressible fluid} \end{split}$$

Basic Conservation Laws – Energy Equations

Using the dissipation function and Fourier's law, the energy eqn becomes

$$\rho \frac{\partial e}{\partial t} + \rho u_k \frac{\partial e}{\partial x_k} = -p \frac{\partial u_k}{\partial x_k} + \frac{\partial}{\partial x_j} \left(k \frac{\partial T}{\partial x_j} \right) + \Phi$$

$$\Phi = \lambda \left(\frac{\partial u_k}{\partial x_k} \right)^2 + \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \frac{\partial u_j}{\partial x_i}$$

2017 Spring Inviscid Flow 9

Basic Conservation Laws – Governing Equations

o For newtonian fluids, in summary

$$\frac{\partial \rho}{\partial t} + \frac{\partial}{\partial x_k} (\rho u_k) = 0$$

$$\rho \frac{\partial u_j}{\partial t} + \rho u_k \frac{\partial u_j}{\partial x_k} = -\frac{\partial \rho}{\partial x_j} + \frac{\partial}{\partial x_j} \left(\lambda \frac{\partial u_k}{\partial x_k} \right) + \frac{\partial}{\partial x_i} \left[\mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \right] + \rho f_j$$

$$\rho \frac{\partial e}{\partial t} + \rho u_k \frac{\partial e}{\partial x_k} = -\rho \frac{\partial u_k}{\partial x_k} + \lambda \left(\frac{\partial u_k}{\partial x_k} \right)^2 + \mu \left(\frac{\partial u_i}{\partial x_j} + \frac{\partial u_j}{\partial x_i} \right) \frac{\partial u_j}{\partial x_i} + \frac{\partial}{\partial x_j} \left(k \frac{\partial T}{\partial x_j} \right)$$

$$p = p(\rho, T) \text{ e.g., } p = \rho RT \text{ for ideal gas}$$

$$e = e(\rho, T) \text{ e.g., } e = C_v T$$

– Seven unknowns: p, ρ , e, T, and u_i

Basic Conservation Laws – Boundary Conditions

- Navier-Stokes equations are, mathematically, a set of three elliptic, second-order PDEs. The appropriate type of boundary conditions are therefore Dirichlet or Neumann conditions on a closed boundary
 - Dirichlet condition: one prescribes the value of a variable at the boundary, e.g. u(x) = constant
 - Neumann condition: one prescribes the gradient normal to the boundary of a variable at the boundary, e.g. $\partial u/\partial n = constant$.
- Physically, this usually amounts to specifying the velocity on all solid boundaries.
 - No-slip condition except for a few special cases

2017 Spring Inviscid Flow 11