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2017 Spring Inviscid Flow

_aws — Viscosity Coefficients

Let’s find a physical meaning of two parameters, A and n
o Consider a simple shear flow in a incompressible fluid where the velocity

is defined asu=u(y)andv=w=0. du
5 O, =0y :,UE
_ ou, u, ou,
Oy =TPO+ A, ox, +'u[5xl. +6xjj # 0, =05, =05="PD

O3 =03, =0y =03 =0

o from Newton’s law of viscosity, the proportionality factor (1) between the
shear stress and the velocity gradient in a simple shear flow is the dynamic

viscosity
— Kinematic viscosity v = Wp
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_ Laws — Viscosity Coefficients

o Ais usually referred as a second viscosity coefficient

o Let’s consider the average of normal stress components as

-p= %(011 +0,, +03;)
This is mechanical pressure, i.e., coming from hydrostatics and/or from
the motion of a fluid
Different from the thermodynamic pressure
o; =trace of ¢

Difference between the thermodynamic pressure and the mechanical
pressure is proportional to the divergence of the velocity vector
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_ Laws — Viscosity Coefficients

p_l—,:(mzﬂ Oy _ g Oy

K: bulk viscosity
3 ox, ox,

o What is bulk viscosity?

mechanical pressure is a measure of the translational energy of the
molecules only

thermodynamic pressure is a measure of the total energy, which
includes vibrational and rotational modes of energy as well as the
translational mode

in a flow field, it is possible to have energy transferred from one mode
to another

bulk viscosity is a measure of this transfer of energy from the
translational mode to the other modes

If the fluid is a monatomic gas, the only mode of molecular energy is
the translational mode. Then, the mechanical pressure and
thermodynamic pressure are the same: ;- _gﬂ Stoke’s relation
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_aws — Navier-Stokes Equation

ou . ou. 0o, ou ou. oéu
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o Momentum conservation eqn + Newtonian fluid constitutive eqn =

Navier-Stokes Egn
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_aws — Navier-Stokes Equation
o Inincompressible (constant density) and constant viscosity flow,
ou ou . op a_ Oou. Ou,
—L+ pu, —+ =~ +—| u| —+—L||+pf,
Pt P ox, T ox o, “[axj ax,.H 2
ol (ou au | [o(ou) o4, &,
ox, Ox; O ox;\ Ox; ) Ox,0x, Ox,0x,
ou . ou . op 82uj

—+pu, —L=——"+ +pf
B Pl e = an M, TP

o If we can ignore the effect of viscosity,

6uj auj op
p—+pu, —=——+pf, Euler Equation = Inviscid Flow
Ot ox, Ox;
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_aws — Energy Equations

o The first term at RHS of energy conservation eqn,

Oe Oe aq;
Pt pu, —— =0, P
ot ox, ) Ox;
ou, 0 Ou. Ou,)|Ou.
Work done by e o, —L = —pS + 15, T 4 | Doy T /
the surface 7 ox. v 7 ox, ox. Ox, ||Ox.
stresses , ’
_ P % e 8ui+auj auj
ox, ox; 0Ox, | Ox
reversible transfer Dissipation function, ®
of energy due to
compression
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2
d=1 oy +u Ouy +au’ &
ox, ox; 0Ox, |ox
o This is a measure of the rate at which mechanical energy is being
converted into thermal energy = Dissipation function

o For an incompressible flow,

O =y aui+6uj auj
Ox; Ox; ) Ox

Ou, Ou; || 1(0u;, ou | 1[0u; ou,
=u| —+—" ||| = -—— |+=| —+—
Ox; Ox; )| 2\ Ox, ox; ) 2| Ox, Ox;

2

=— Ul —+— —> Positive definite = dissipation function

2 axj ox; always works to increase irreversibly the internal energy
of an incompressible fluid
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o Using the dissipation function and Fourier’s law, the energy eqn becomes

Oe Oe ou, O oT
p—+pu, =—p + k +O
ot ox, Ox, Ox,| Ox;
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_ws — Governing Equations

o For newtonian fluids, in summary

op 0

—+—(pu,)=0

o1 axk(p 0

ou, ou, op 0 ou 0 Ou, Ou,

—L+ L=—— AL+ —|y| —<L+—L ||+ pf
pat pukaxk Ox; axj( 6xkj 8x[ﬂ(6xj Gxiﬂ 2

2
~ Ou, |Ou,
p%'i‘pukg:_p%'i'/l % +u aul+ uJ uf+ 0 kaT
ot ox, ox, ox, ox; Ox, Jox, Ox;| Ox;
p=p(p,T) eg.,p=pRT for ideal gas

e=e(p,T)eg.,e=CT

— Seven unknowns: p, p, e, T, and y;
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1 Laws — Boundary Conditions

o Navier-Stokes equations are, mathematically, a set of three elliptic,
second-order PDEs. The appropriate type of boundary conditions are
therefore Dirichlet or Neumann conditions on a closed boundary

— Dirichlet condition: one prescribes the value of a variable at the
boundary, e.g. u(x) = constant

— Neumann condition: one prescribes the gradient normal to the
boundary of a variable at the boundary, e.g. du/dn = constant.

o Physically, this usually amounts to specifying the velocity on all solid
boundaries.

— No-slip condition except for a few special cases
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