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Kalman Filtering w/ No Uncertainty

e Linear discrete plant dynamics with measurement (cf. EKF, UKF):

Tpt1 = Frxp + Grug, yx = Hyp

where zx € R" is state, ux € R? input, and yx € R™ measurement output.

e If Fy, Gk, ur known (impractical: to be relaxed), state estimator:

Try1k = Fripp + Grus

where £ 1z is prediction of x4 given “best” estimate # . of zx prop-
agated via dynamics over [k, k + 1] (can’t do any better than this).

e Now, suppose measurement yry1 given at k + 1. Then, how to update
Zx41)x using this information?

e First of all, the estimate £341jx41 of Tx41 should be consistent with this
information yx4+1 = Hgy1Zk41, i€,

-'ﬁk+1|k+1 €= {ZB eRr" | Y41 = Hk+1.'L‘}

oDongjun Lee




Kalman Filtering w/ No Uncertainty

Estimate &y1jx+1 of Tx41 should consistent W/ Yr+1 = Hrp1%Tp41, i€,

ﬁk+1|k+1 eN:= {m eR” | Yk4+1 = Hk+1m}

Optimal estimate 1|11 = correction of £;,; into its closest point
on {2 with Euclidean norm.

e Using §:k+1|k+1 — ﬁk+1|k = Hg_i_la and Y41 = Hk+1§7k+1|k+17

. A T T \—1 .
Erp1ipr1 = Erepp + Hipr (Her1Hey1) ™ (Y41 — Jrta]

where Jx41 = Hyi18x41)% (best estimated output).
e Kalman filtering w/ no uncertainty: with oo,
. Plant: zy1 = Fray, + Grux w/ measurement y, = Hyxy Q=
. Prediction (propagation): Zxi1)x = FrZx + Grus
. Measurement {(output): yx+1 = Het1Zk+1

. Estimated measurement: {1 = Hk+1§:k+1|k

Ot AW

. Correction (update): £xi1jk+1 = Zx1jetHigy 1 (Her1Higy 1) ™ [Yer1 — Gea]
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Kalman Filtering w/ Process Noise

e Plant dynamics with measurement and process noise vg:

Tpt1 = Fpzp + Grug + vk, yr = Hyxp

where v € R™ zero mean Gaussian w/ Efvg] = ¥ = 0 and covariance
E[(vk — t)(vk — U%)T)] = Vi € R™*" (e.g., uncertainty in actuation uz,
modeling Fy, G, unmodeled friction/slip, discretization).

e Now, z; becomes RV = need to estimate its mean and also covariance
too, i.e., starting from (£gj0, Pojo),
— Prediction (Zxy1|k, Pit1jk): by propagating (&g, Pex) via plant
dynamics with uncertainty Vj, due to process noise.
— Correction (£x11)k41; Pretap+1): by using re41 = Y41 — Jk41 with
uncertainty Sg41 of 741 also taken into account.

e Prediction:

— State (mean) prediction:| Zr 1k = Felppe + Grus |

— Uncertainty (covariance) propagation:‘ Pryik = FkPk“:FE + Wi ‘
where Pk+1|k = E[(ﬁk+1|k - (L‘k+1)(£’l\7’ﬁ+1lk - E]H_])‘l ], i.e., uncerta.inty
from perfect estimate zx ) (w/ vx independent from zx, Zyx). =
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Kalman Filtering w/ Process Noise

Plant dynamics with measurement and process noise v:

o Tri1ik

‘ ZTrt1 = Frxp + Grug + vk, yr = Hrpzg ‘

Prediction:
— State (mean) prediction: &x41jx = FrZxx + Grux

— Uncertainty (covariance) propagation: Py, = FkPka;;r + Vi

Now, suppose measurement yx1 is given. Then, how to update (£ 1)k, Pet1k)
using this information?

The estimate £ 1541 should again be consistent with yg 1 = Hgy1ZTp41:

fi'k+1|k+1 el:= {.’E eR” | Yk+1 = Hk+1.’l:}

Yet, we shouldn’t weigh all channels of = equally as some channel may be
more uncertain than others = different metric other than I.

e Mahalanobis metric more weight and updating action for chan-
nels with smaller Py (i-e., high certainty).

8%
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Kalman Filtering w/ Process Noise

e The estimate 251541 should again be consistent with yg1 = Hgi1Zk+41:

:i'k+1|k+1 cQ:= {:L‘ € R" | Yr4+1 = Hk+1$}

e Optimal estimate £541x+1: correction of &3 into its closest point on

1 with Mahalanobis norm P, +11| &

A o -1
[ ] USlng zk+1|k+1_$k+1]k = Pk+1|kH,?+1a (J_ null(H) w.r.t. Pk-l—l,k)’ Ye+1 =
Hyy1Zk41)k+1, 80d Jrp1 = Hey1Z5 41 % (best estimated output):

Eptr)k+r = Tk + Kit1 - [Urt1 — Jrpa]

T —1 T
Ki+1 = Pey1eHi11Scr1, Skt = Hepa Py Hiy

— Residual covariance Sy 1: uncertainty in g1 (solely due to §xt1);
— Kalman gain Kj,;: more update action for more uncertain state
with more certain measurement information.
e Uncertainty update (reduction):
Pei1jet1 = E [(Eri1et1 — Tr1) Erapers — Trt)

T o-1
‘ = Pryak — Pryye Hir1 Sp i He1 Py gk ‘

R
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Kalman Filtering w/ Process Noise

Plant dynamics with measurement and process noise vy:

Trt1 = Frzp + Grug + vk, yr = Hgxg

Prediction:
Zr1)k = Fedpx + Gruk (state prediction) 5
@ Tk+1lk

Pre= FkPkp,Fff + Vi (uncertainty propagation) //7

/ orthogonal wrt Pfi..c
o Measurement: yx41 = Hey12k and g1 = Hiadeyape Z SBrtl ks

e Correction: fﬁg(,“\\&m
Erp1jk+1 = B + Kigr - [Yk+1 — Trva] (state correction)

Pk+1|k+1 = Pk+1|k — Pk+1|kHZw+1Sk__:1Hk+1Pk+l|k (uncerta.inty reduction)

— Redisual variance: Sk41 = Hrq1Pey1pHiy 1 (= Elresiriyq))
— Kalman gain: Kiy1 = PeyqeHE 1 Sh
— Uncertainty always reduced with certain measurement info yy.

— H=1= P41 — 0, i.e., perfect estimation with ygi1 = Tr41-
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Kalman Filtering

e Plant dynamics with process noise vy and measurement noise wy:

Trt1 = Frzp + Grug + vk, yr = Hpzp + wi

wx € R™ zero mean Gaussian w/ E|wg] = wr = 0 and covariance E[(wy, —
) (wg — 'u')k)T)] = Wi € R™*".

e Prediction (same as before):
Zrs1jk = Fadrr + Grug (state prediction)
Piy1jk = Fe PP + Vi (uncertainty propagation)
e Measurement: yri1 = Hry1Zk + wi and §ry1 = Heyp1Zp 1k

— Both yr41 and g1 are now RVs with uncertainty, Wi ; and Wk+1.
— Given yk+1, real measurement would likely distributed by N (ye41, Wet1)-

— For {41, its covariance given by

Wit1 = E [(@k+1 — HeTos1) Gt — Hi1%r41)7] = Hesr Pere Hi

— Given N(yx11, Wit1) and N (911, We11), most like output y}: 117
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Kalman Filtering

 Merge measurement info N (yk41, Wr+1) and estimated measurement info
N (Jk+1, Wiy1) using product of Gaussians {cf. Th.8.2.1) = most like
measurement: y;,, = product(yx41,Jk+1), which is still Gaussian with

Yar1 = Pk + Wi Sity - [Uh41 — kg1 (mean)
Wi = Wi — Wi S{$1Wk+1 (covariance)

where Sg1 = Wiy + Wi = Hk+1Pk+1|kHE+1 + Wk, ie., combined
uncertainty in r¢y1 = Jr4+1 — Y1 (residual variance).
® Tk+1jk

e With y;,, as best measurement, estimate £;1)x1 should again be

consistent w/ that information: 1
/orthogonal P2

Tht1lk+1

Ertijer € Qyp,, = {z € R | yiyy = Hipaz}

e Optimal estimate £ ;x41: correction of £ into its closest point on
Qy;H with Mahalanobis norm P -I}ll B

N _ A T 1ir—1 * -
Zrr1)k+1 = Tet1)k + Porre Hera Wiy - [yk+1 - yk+1]

R T a—1 .
= Erp1jk + PerapeHe 41 S5h - Wk — 1]
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Kalman Filtering

e Most like measurement: y;,, = product(yx+1,Jk+1) With

N o —1 N
Ykt1 = Pr+1 + Wk+15'k+1 - [k — Gl (mean)
i 1 -1 1i .
Wi = Wit — W1 S Wi (covariance)
. . z
Sky1 = Hrp1PeyrpHiy + Wi (vesidual variance) * “F*ilk

e Optimal estimate £341jk41: Jorthogonal P+,

o o T a—1 W\
Epr1jk+1 = Enr1pk + PoripHe1Segr - [Ye+1 — Jry1] |

which is in the same form as before (yet, different residual variance Sk1 =
Hyy1Pey1HiL,y + Wiy instead of Sgy1 = Hey1Pey1pHiy)-

e Uncertainty update (reduction):
Petije+1 = E [Brrapetr — o) Ertaprr — Tra1)” ]
—E [((I — P Hi 1 Si 1) Grpnpe — @) (- .)T:I
= Petajk — PorreHip1Siia Hir1 Py

which is again in the same form as before.

WR
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Kalman Filtering

Plant dynamics with process noise v and measurement noise wg:

Tr41 = Frxp + Grug +vg, Y = Hpop +wi

e Prediction:

Zry1)k = Felgp + Grur (state prediction)
Pevapk = Fe P FE + Vi (uncertainty propagation)
e Measurement: yx+1 = Hi412k + we1 and Jrt1 = Her1&pra)k /\ -
e Correction: :
Err1k+1 = Trpa ke + K1 - [Yer1 — Jra] (state correction)

Pk+1|k+1 = Pk+1|k - Pk+1|kHE+1S;i1Hk+1Pk+1|k (uncert;a.inty reductiop)

— Redisual variance: Sg41 = Hk+1Pk+1|kH,f+1 + Wi

—_ Kalman gain: Kk+1 — Pk+1|kHIZ'+IS]:.|{1 direction with X weighted gain of

SIB(EU”CEI’[BWI\/ measurement L i
— K41 automatically and optimally adjusting, incorporating measure-
ment uncertainty and state estimate uncertainty.
— With Hy =1 1) If Wyy1 =0= Kpyy =1 and Peyqpy1 =0; 2) If
Wit1 =00 = K1 =0 and Peyyjpy1 = Prg-

oDongjun Lee &)

Kalman Filtering: Example

O
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Kalman Filtering: SLAM

Extended Kalman Filtering

e Standard KF assumes linear plant dynamics with linear measurement

model:

Tp+1 = Frxp + Grug + v,  yr = Hyop + wi

e Yet, of course, most real systems are nonlinear with:

ey = frl@r, Uk, vr),  Yr = halwr) +wi

where uj input, vz process noise, yx sensor reading, wy measurement noise.

e Extended Kalman filtering (EKF):

oDongjun Lee

— State prediction (i.e., Zx41%x) and correction (i.e., Zxy1jx+1) using
nonlinear plant dynamics and measurement model.

— Uncertainty propagation (i.e., Pgy1x) and update (i.e., Peyijk41)

using linearized (i.e., approximate) plant/measurement models.

— Assume mean propagates still to mean, while uncertainty propagates
via linearized model.

— Generally not true for nonlinear mapping = may even diverge if

approximation/linearization error too large (cf. UKF).

.
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Extended Kalman Filtering

e Nonlinear plant and measurement models with process/measurement noise:

Trt1 = fr(Tr, Uk, Vi), Yk = he(Tr) +wi

o Prediction:

— State prediction (mean propagation via nonlinear plant model):

Zpa)k = fe(Erjk, ux, 0)

— Uncertainty propagation via linearized plant dynamics:

* Define ik+1|k = ﬁk+1|k — Tk41 and ik“‘: = .’%Hk — Tkg. Then,
Piy1je = El(Eri1pe — Tha1) Gk — To+1) "] = ElZri1 B4 al]
and Pk|k = E[(.’f';k'k — mk)(:%Hk — III)‘,)T] = E[:;?Hk.’f“};lk].

* Linearization at Zgx:

= e 5 Afn
[ ~ Trix + Vg
kil oz (CTAPRTTY) ki v (Zx |51 Uk)

= Fy(Zkik> uk)Zrik + Gok(Tkjks Uk )k
* Covariance propagation (via linearized plant dynamics):

Pitije = FiPupFE + GuViGoy

8%
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Extended Kalman Filtering

e Nonlinear plant and measurement models with process/measurement noise:

Tr1 = fi(Tr, vk, V),  Yr = helzr) +wi

e Prediction:
Zrpak = fe(Er, vk, 0) (state prediction)
Pei1jk = FuPyiFy + GurViGoy (covariance propagation)
e Measurement:
— Y41 = hag1(Try1) +wi (real) and Jry1 = heya1(Zxy1x) (estimate).

— Linearize measurement around &y

Drrilk — Y1 = ahf’;i . Zpq1pk + wk = Hep1 (Zrq1 k) Trpa |k + Wi
— Residual of covariance of 7¢+1 = Yr+1 — Jr+1:

Sk+1 = B[(Yk+1 — Dr41) Wr1 — x41)T] = Hir PeyapeHips + Wi
— Kalman gain: Kxy1 = PepypH{, 155 -

— State correction: ﬁk+1|k+1 = ik+1|k + Kk+1 - [yk+1 - gk+1]

— Uncertainty update: Pyyqj541 = Pk+1|k_Pk+1|ng+1Sk_.|{1Hk+1Pk+1]§9
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Extended Kalman Filtering

e Nonlinear plant and measurement models with process/measurement noise:

Thp1 = fr(Tr, ur, V),  Yr = he(zr) +wi

e Prediction:
Exqa|k = fe(Erjks ux, 0) (state prediction)
Pk = FePui Y + GurViGEy (covariance propagation)

where Fy, = afk/a"”'l(ikm,nk) and Gy = 6fk/av|(£;,p,,uk)

e Measurement: ki1 = hit1(Tet1) +we and Jri1 = her1 (Epy1ie)-

Epp1)k+1 = Errik + Ker1 - [Uk+1 — Gr4a] (state correction)

Pet1je+1 = Pey1je — ProyyoHiy1Sep1He1Peyrx (uncertainty update)

where Hk+1 = 6hk+13:r:|

Brr11k”
— Redisual variance: Sgy1 = Hiy1Pey1pHE 1 + Wi

— Kalman gain: Kiy1 = PeyaHip, 1S

8%
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EKF Localization

e Consider WMR with state z = (z,,¥r,0,) and linear/angular velocity
inputs « = [u1,ug]. Then, nonlinear discrete-time kinematic model is:

e o
Ty k + U1 5 AL cOs O i Uz, k °
Try1 = | Yrk +urpAtsinbey | + | vy P!
Ork + ug s At Vrk N

where At > 0 sampling rate, vy € %3 zero-mean Gaussian process noise
(e.g., discretization error, actuator noise, friction, etc.)

e WMR is equipped with range/bearing sensors and, at each k, it can
sense p landmarks among np, surrounding/stationary andmarks.

e Assume data-association (i.e., which sensing is associated with which
landmark) is somehow done, i.e., following association map ay, is known:

ag . {1,2, ...,pk} = {1,2, ...,nL}

e Then, at each k, WMR has p;, active measurements, h;(zk, ax(5)) + wj i,
j=1,...,pk, each associated with ax(7)-th landmark.

R
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EKF Localization

e Measurement equation with py measurements at k is given by:

hi(zk, ax(1))
ha(zx, ax(2))

Y =

J(r oL
+m,mmmmh{“%%m0

91(1’27135,,(,-))

P (@ 05 (28)

where, with I; = a,(j), i = /(@rk — ;)% + (Yrk — 41;)* (L., range)
and 6 = atan2(y,x — W, Trk — Z1;) — Ork (ie., bearing).

e State prediction: with At =1 for simplicity,

Ty |k + U1,k COS Or i)k
Tr1lk = | Jrkjk + U1k S0 O ik
Or ik + U2,k

e Linearization of state equation for uncertainty propagation:

1 0 sOruip
Zrpik =Zkpk —Th+1= | 0 1 cbrpurp | Zek + v = Felrr + vk

00 1

©oDongjun Lee &)

EKF Localization

e Estimated measurements: for j =1, ..., pg,

o _ vV @rget1ik — 21,)% + Gtk — y1,)?
Yik+1 = - o
atan2(fr k+1)k — Yty > Erk41jk — 1) — Orkt1jk

e Linearization measurement equation for uncertainty propagation:

Zrkyre—T;  Trey1le—Yi; 0
. ] # .
4. . _ k+1|k k+1]k p~d
7-I1¢:+1 = Yik+1 — Yik+1 = —sin 6] cos 2 Trt1lk + ’wi_‘_l
'f';c+1|k ﬁ:+1|k

— i A '
= Hj 1%k + w0y,

thus, stacking up these equations for y = [y1,%2, ---, Ups |»
Tr+1 = Her1Zpa)x + Wi

e Measurement update:

Er1jk+1 = Trprk + K1 [Yr+1 — Grt1]

. . —1
with Kalman gain Kyy; = Pk+1|kH;£+ISk+1' o
loDongjun Lee —
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Simple EKF-SLAM

e Estimated measurements: for j =1, ..., pg,

Ginsr = ( VGrpsrk — 2,) + @rprre — y1y)? )
> atan2(Jr g1k — Y15 Er 1)k — T1;) — Orkt1)k

e Linearization measurement equation for uncertainty propagation:

Bretrk—Ft;  Trpy1|— YL, 0
S L _ ‘f’;;+1|1=. ﬂ;ﬂlk F +w!
E+1 = Yik+1 — Yjk+1 = —sin 69 cos § 1 k+1|k k41
f_;le+1|k Fi=+1|le

— I 3 j
= Hy 1 &1p + w3,

thus, stacking up these equations for y = [y1, %2, ..., Up |»

° o
~ (0]
Tk+1 = He1ZTpq1k + wi
& (6}
o
e Measurement update: g
Qo
Erpa|k+1 = Trrike + Ker1[Yee1 — Grs1]
. . —1
with Kalman gain Kyy1 = Pey1sHi 1S5 -
foDongjun Lee &)
EKF: Example 2
loDongjun Lee ]
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Unscented Transformation
o EKF propagates mean to mean via nonlinear equation, and uncertainty via
linear approximation = distortion via nonlinear mapping not considered.

e Linearization (EKF) vs Unscented Transformation (UKF)

— Consider y = g(z) w/ RV z = (Z, P,) propagate via nonlinear g.

— Mean mapping + linearization (EKF) Actual (sampling) Linearized (EKF)
T | . domaoms
~EKF __ = EKF a ;) ot -

— Unscented Transformation (UKF): " \
1. Define 2n + 1 sigma. points z7 € ™

o =%, z; =T+ I:\/m]l Q?mmmu V )

2. Propagate z7 directly via g: Y; = g(z7).
3. Estimate (g, P,) using Y; via

g Y WiV, By Wi [i-9)Qi-9)7]

with W = , We = +(1 Ol +IB)’ W =W¢= ﬁ?
—az(n—i-ksL (a~0 lé\ 2). )
oDongjun Lee 4. 3rd order accurate for Gaussian z second—order for non-Gaussian.

Unscented Kalman Filtering

e Nonlinear plant dynamics and measurement models w/ process/sensing
noise:

Tr1 = fr(Tr, vk, V), Yk = hr(Tr, wi)

e Augmented state for propagation: z§ := (z, vk, wk)-
e Initialization:
z; = E[z;] = (%,,0,0)
P} = E|(z5 — 73)(z5 — 73)"] = diag[Pro, Vi, Wi]

e Iteration: given Z§ = (Zxx,0,0) and P¢ = diag[P; xx,0,0],

e Sigma points generation:

Z?",’c = {ﬂ,fﬁ + |:V (n' + )‘)PI?:I .}’ 1,‘?,7; = (zg:kwvg,mwg;k)
i

e Prediction by propagating (2n + 1)-sigma points via nonlinear map fi:

ka+1|k = fk(mgkyukyvgk)
Tr+ilk = ZW k1K

Popaike = Y WEAT 1 — Tl X1k — Borae]”

O
oDongjun Lee B4
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Unscented Kalman Filtering

e Nonlinear plant dynamics and measurement models w/ process/sensing
noise:

Try1 = fr(@r, Uk, k), Y = hi(zk, wi)

e Sigma points generation:

of = (oot £ |+ VB ), ot = (o ofanua)
%

¢ Measurement estimate by propagating sigma points via hgi:

J— ZT g
Vigte = Praa (Xg )6 wik)
i1 =D W Vikspk

e Measurement update (same form as EKF):

Zgpi|k+1 = Trpile + Kera - [Ur+1 — Trt1]

_ . T
Pev1jk+1 = Peyaje — Kit1Pjigr iy Kit1

Pt is the Kalman gain with P,

where Ky := P5k+llkﬂk+1 Fr+1Fr+1

1811 =

WX e — Tl Vi1 — Jx+1]7 (i-e., cross-variance).

©Dongjun Lee

Y WEDYs kv 1k =41l Vi k1 x—Tk41] T (ie., residual variance), and Ps, |, iyr =

EKF vs UKF

e EKF utilizes mean-to-mean propagation and linearized equation for un-
certainty propagation = nonlinearity of the mapping (e.g., distortion) not
properly considered, only approximated uncertainty propagation.

% %
time (sec)

e UKF propagates opportunistically-chosen (2n + 1) sigma points directly
via nonlinear mapping to estimate mean and covariance of mapped points.
— Sampling-based method.
— 3rd order accurate for GRV, 2nd order for non-Gaussian.
— Better prediction/covariance accuracy than EFK.
— No need to compute Jacobian (e.g., complex fi, hx)

— Same measurement update form with Kalman gain K1, ie.,

UKF _ p_ . —1 ~ WEKF _ T q—-1
Kk+1 = sz+1|kyk+1P§k+lﬁk+1 ~ Kk+1 = Pk+1|ka+ISk-+1

Py viinss = El(@k+1—yr1) @rt1 —yk41)T] = Hip1 Py H  + Wi
= Skt1and Ps,geys = B [(@ka1)e — Zh) [Hir @rgage — Trar) + wi] 7]
=F k+1IkHE+1~

— EKF may become inconsistent (i.e., spurious update with over-confidence)
due to fake information generated by different linearization points.

oDongjun Lee
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Unscented Transformation

©Dongjun Lee

Vehicle Kinematic Modeling

e Vehicle equation:
& = Vicosgi, 9 =Visings, ¢;=w;
e Vehicle model with measurement:

& = Vimcos @i, @i = Vimsing;, ¢; = wim

where Vi, = V; + wy; and w;y, = w; + wy; are measurement corrupted

by Gaussian sensor noise wy;, Way;-
e Esitmation errors: Z; = &; — i, #i = ¥ — ¥i, i = ¢i — ¢Pi.

e Linearized discrete error state equation:

5}-,',],4_1 10 —V;m sin (ﬁ,'At i‘i,k Cos (]giAt

ikt | =| 0 1 VipycosgAt Pik |+ | sing;At

bi k1 0 0 1 ik 0
ie.,

Zik41 = Pipr1,6Tik + Gipwik

.. Stacked error state propagation equation

0
0
At

(

Wvik
Wi,k

.
B

)
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Vehicle Kinematic Modeling

Vehicle equation: &; = V; cos¢;, ; = V;sin¢;, q'S,; = w;.

Vehicle model with measurement:
#; = Vimcos i, §i = Vimsings, ¢ = wim

where V;,, = V; + wy; and w;,, = w; + wy; are measurement corrupted
by Gaussian sensor noise wy;, Way;-

e Esitmation errors: 5;‘.;, = f:,' — &, ﬂ,’ = ﬁ.;, — Ui, gb,’ = ¢5 - ¢i-

Linearized discrete error state equation:
Ti k41 1 0 —Vip,s qSiAt Tik c (EiAt 0 W
Giks1 | =] 0 1 VipchAt Girx |+ | sdat o ( w"'_': )
Dik+1 00 1 ik 0 At wh

e Relative pose measurement: 293 = [ CT(¢2)lps — p2l; 3 — o2 ] € 3,
with p; = [zi; 5] € E(2) and C(¢;) € SO(2).

Real relative measurement:

Zag=[ CT($2)[ps — Da); &3 — ba |+mes (ideal) zo3 = [ CT(da)lps —pol; é3— 2 |
3, with p; = [z;;3:] € E(2) and C(¢;) € SO(2).

fepongjun Lee

Geometry of Lagrange Multiplier
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Fig. 5. Position + error for robot 2 when the robots continuously
relative position and orientation. The position uncertainty is almost one
magnitude smaller compared to the case of simple DR Note the diffe o0
scale between this figure and Figs. 4 and 6. The two bounding lines d

the 30 region of confidence for the position + error, and they are & o0 . H H i H H
o s w0 w0 me @m0 aw w0 40 a0

RN
a0 based on the covariance of the position r estimate. The flatline portio, i (se0,
" region of confidence (constant position uncertainty) correspond to time

%% we m  me  aw  that the robot was moving very slowly Fig 6. Position r error for robot 2 when the group collects relative position)
i ey d (dusing the t =189
andt = 234 5) The rest of the time, each of the robots dead reckons s position

Fig. 4. Position » error for robot 2 when no relative pose measurements Note the sharp decrease in uncertaiaty for  — 189 5 and -
are available. The robot integrates the rotational and translational velocity fwo bouading lines defermine the 3 region of confidence for the position 1
measuzed by the encoders iu order 1o estinate its position (DR). The two error and they are calculated based on the covariance of the position r estimate

bounding lines determine the 37 region of confidence for the position » error,
and they are calculated based on the covariance of the position » estimate. The
flatline portions of the region of confidence (constant position uncertainty)
correspond to time intervals that the robot was moving very slowly.

The flatline portions of the region of confidence (constant position uncertainty)|
correspond to time intervals that the robot was moving very slowly
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Geometry of Lagrange Multiplier
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Fig. 9. Position  error for robots 2, 1, and 3 when robot 2 receives absolur
positioning information and contimiously measures relative position an
orientation with respect to robots 1 and 3. The bounding lines around t
positioning errors determine the 30 segions of confidence for the positio
+ error, and they are calculated based on the covariance of the position
estimates. For all three robots, the position error is bounded
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Fig. 11 Position » error for robots 2, 1, and 3 when robot 2 recei
positioning information and there is 1o communication with rol
The bounding lines around the positioning errors determine the
of confidence for the position 1 error, and they are calculated b
covariance of the posifion  estimates. The position error is boun
robot 2, while for robots 1 and 3, it grows continuously while |
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Fig. 12. Position + error for robots 2, 1. and 3 when robot 2 is standing
still while robots 1 and 3 continuously measure their relative position and
orientation with respect to robot 2. The bounding lines around the positioning
errors determine the 37 regions of confidence for the position 1 error. and they
are calculated based on the covariance of the position » estimates. Since robot
2 is not moving, ifs position uncertainty is constant. For the other two robots
that use robot 2 as a landmark, the position error is bounded.
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