Organic chemistry background I

Organic compounds

• Definition

- Any member of compounds containing carbon
- Exception: carbonates (HCO₃⁻ and CO₃²⁻), simple carbon oxides (CO and CO₂), carbides*, cyanides (CN⁻)
 - * carbides: compound composed of carbon and a less electronegative element (ex: CaC₂, CSi, WC)

• Makeup of organic molecules

- Millions of organic compounds exist due to the ability of carbon to form up to four stable carbon-carbon bonds
- Unlimited kinds of *carbon skeletons* can be made
- Elemental composition: C, H, O, N, S, P, halogens
- Heteroatoms: elements in an organic molecule other than C and H

Description of a compound

- Elemental composition: which elements the compound contains
- **Molecular formula**: how many atoms of each of the elements are present in one molecule
- **Molecular mass**: sum of the masses of all atoms present in the molecule
- **Molecular structure (constitution)**: the exact connection of the atoms constituting the molecule
- **Molecular geometry**: the 3-D arrangement of the atoms

Electron shells of elements

- Atoms containing "filled shells" are stable
 - Noble gases: He, Ne, Ar, Kr, Xe, Rn
- Atoms in organic molecules have tendencies to attain filledshell conditions by gaining, losing, or most importantly, sharing electrons

Orbital energy levels

- 1st shell (K-shell): holds 2
 electrons (1s²)
- 2nd shell (L-shell): holds 8 electrons (1s² 2s² 2p⁶)
- 3rd shell (M-shell): holds 18 electrons (1s² 2s² 2p⁶ 3s² 3p⁶ 3d¹⁰), but a stable configuration is reached when the shell is filled with 8 electrons (1s² 2s² 2p⁶ 3s² 3p⁶)

http://www.dummies.com

Orbital diagrams

http://www.khanacademy.org

Electron shells of elements

source: EOC text

Name	Element ^a		Mass ^b	Number of Electrons in Shell					Net	Number of Covalent
	Symbol	Number	- (u) -	K	L	М	Ν	0	 Charge of Kernel^c 	Bonds Commonly Occurring in Organic Molecules
Hydrogen	Н	1	1.008	1					1+	1
<u>Helium</u>	He	2		<u>2</u>					0	
Carbon	С	6	12.011	2	4				4+	4
Nitrogen	Ν	7	14.007	2	5				5+	3,(4) ^d
Oxygen	0	8	15.999	2	6				6+	2,(1) ^e
Fluorine	F	9	18.998	2	7				7+	1
Neon	Ne	10		2	<u>8</u>				0	
Phosphorus	Р	15	30.974	2	8	5			5+	3,5
Sulfur	S	16	32.06	2	8	6			6+	2,4,6,(1) ^e
Chlorine	Cl	17	35.453	2	8	7			8+	1
<u>Argon</u>	Ar	18		2	8	<u>8</u>			0	
Bromine	Br	35	79.904	2	8	18	7		7+	1
<u>Krypton</u>	<u>Kr</u>	36		2	8	18	<u>8</u>		0	
Iodine	Ι	53	126.905	2	8	18	18	7	7+	1
<u>Xenon</u>	Xe	54		2	8	18	18	<u>8</u>	0	

^a The underlined elements are the noble gases. ^b Based on the assigned atomic mass constant of u=atomic mass of ${}^{12}C/12$; abundance-averaged values of the naturally occurring isotopes. ^c Kernel: the portion of an atom excluding the outer shell electrons. ^d Positively charged atom.

^e Negatively charged atom.

Covalent bond

- Octet rule: atoms tend to combine in such a way that each atom has 8 electrons in its outer (valence) shell
- Covalent bond
 - Atoms complete their outer-shell octet by sharing a pair of electrons, in most cases one electron contributed by each of the two bonded atoms
 - Each atom feels it has both of the shared electrons
 - The electron pairs are localized between the two positive atomic nuclei; the electrostatic attraction of these nuclei to these electrons holds the atoms together

8

Covalent bond

- Coordinate bond
 - A kind of a covalent bond in which the two electrons derive from the same atom
 - One atom donates a lone pair of electrons (Lewis base) and the other atom accepts the electron pair (Lewis acid)

Drawing molecular structures

(2)
$$H_3C - CH_2 - CH_2 - CH_2 - CI$$
 (4)

10

Double and triple bonds

- Atoms with more than one missing electrons in their outer shells may form double or triple bonds
- Single covalent bond is a sigma (σ) bond; double and triple bonds contain one σ bond and π bond(s)
 - σ bond: a covalent bond in which orbital overlap of the bond is concentrated along the axis joining the two nuclei
 - π bond: a covalent bond formed by overlap of parallel p orbitals
 (generally weaker than the σ bonds)

http://chemistryistorture.blogspot.kr/2013/03/ red-high-density-valence-bond-theory-so.html

Orbital hybridization

Orbital hybridization

Orbital hybridization

