
• For a reversible reaction

aA + bB cC + dD

at chemical equilibrium, 

rate(forward rxn) = rate(reverse rxn)

• Equilibrium constant, K
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For pure solid, activity = 1

For gases, activity = partial pressure



• For a precipitation-dissolution reaction

AaBb(s)            aAx+ + bBy-

as {AaBb} = 1 (pure solid), K = {Ax+}a{By-}b

• Solubility product, Ks = {Ax+}a{By-}b
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• Recall that {i} = γ[i]:
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Ci = molarity of the ith ion

zi = charge of the ith ion
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• Ionic strength, I: measure of interaction 

among ions in a solution    



• Davies equation (for I < 0.5 M):

A ≈ 0.5 for water at 25˚C

z = charge of the ion
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Q: Added 30g of CaCO3 in water of make 1.00 L 

solution containing 0.01 M NaCl. Assuming Ca2+ in 

solution is at equilibrium with CaCO3(s), what would be 

the Ca2+ concentration? 

(T =25oC, pKs for CaCO3 = 8.48)



• Ionization of water:
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• Dissociation constant of water, Kw

−+ +=+ OHOHOHOH 322
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{ }{ }+−= OHOHKw 3 { }{ }+−= HOHKwor

(at 25˚C)14=wpK

7<pH { } { },OHH −+ > acidic

7>pH { } { },OHH −+ < basic
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• Acid dissociation constant, Ka

[ ][ ]
[ ]HA

AH
Ka

−+
=

• Strong acid = strong tendency to dissociate = 

high Ka = low pKa

• Weak acid = only a small fraction dissociates = 

low Ka = high pKa

−+ += AHHA
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Acid Reaction pKa

Hydrochloric acid HCl = H+ + Cl- ≈-3

Nitric acid HNO3 = H+ + NO3
- -1

Sulfuric acid H2SO4 = H+ + HSO4
- ≈-3

Bisulfate HSO4
- = H+ + SO4

2- 1.9

Acetic acid CH3COOH = H+ + CH3COO- 4.75

Carbonic acid H2CO3* = H+ + HCO3
-

HCO3
- = H+ + CO3

2-

6.35

10.33

Phosphoric acid H3PO4 = H+ + H2PO4
-

H2PO4
- H+ + HPO4

2--

HPO4
2- = H+ + PO4

3-

2.12

7.20

12.32

Strong

Weak
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Q: A solution of HOCl is prepared in water by adding 

15 mg HOCl to a volumetric flask, and adding water to 

the 1.0 L mark. The final pH is measured to be 7.0. 

What are the concentrations of HOCl and OCl-?

(T = 25˚C)



12

• Henry’s Law: partial pressure of a chemical in 

the gas phase is linearly proportional to the 

concentration of the chemical in the aqueous 

phase

Pgas = kC*

where Pgas = partial pressure in the gas phase

C* = concentration in the water

k = constant



• The equilibrium/solubility product constants 

do not tell anything about the reaction rate!

• Differentiate equilibrium and kinetics
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• Textbook Ch2 p. 44-56
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• Reaction kinetics: study of the speed at which 

reactions proceed

aA + bB →  cC

[ ] [ ] [ ]βα BAk
dt

Ad
rA −==

rA = reaction rate w.r.t. chemical A [conc./time]

k = reaction rate constant

� + � = reaction order
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Reaction order Rate expression Units on k

Zero rA = -k (conc.)(time)-1

First rA = -k[A] (time)-1

Second rA = -k[A]2 (conc.)-1(time)-1

Second rA = -k[A][B] (conc.)-1(time)-1

• Half-life (t1/2): time required for the 

concentration to reach ½ of its initial conc.
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• Weight percent, P

• ppm, ppb, ppt

• Molarity, M

• Normality, N (acid-base reaction)

%
WW

W
P 100

0

×
+

=

nMN =

W = mass of substance (g)

W0 = mass of solute (g)

n = no. of protons transferred
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• Buffer: a solution that resists large changes in 

pH 

• A solution of weak acid and its salt is a buffer

• Atmospheric CO2 produces a natural buffer:

H2CO3* = sum of true H2CO3(aq) and CO2(aq)
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Acid dissociation:

Define CT as:

(at 25˚C)

(at 25˚C)
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Then:
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If CT is known, we can obtain the concentration of 
each species at a certain pH 
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Now, think of 
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If pH < pKa1, [H2CO3*] > [HCO3
-]

(If pH – pKa1 = -2, [H2CO3*] = 100[HCO3
-])

If pH > pKa1, [H2CO3*] < [HCO3
-]

(If pH – pKa1 = 2, [HCO3
-] = 100 [H2CO3*])
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This applies to HCO3
- - CO3

2- relationship as well:

If pH < pKa2, [HCO3
-] > [CO3

2-]

If pH > pKa2, [HCO3
-] < [CO3

2-]

Actually this principle applies to any acids:

If pH < pKa, associated (protonated) form dominates

If pH > pKa, dissociated (deprotonated) form dominates
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1. Closed system: CT is constant

Solving for pH < pKa1 region as an example

At this pH range, H2CO3* dominant:
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1. Closed system
CT=10-3 M

Davis & Masten (2014)
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2. Open system: constant [H2CO3*]

(at 25˚C), ambient air
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2. Open system

Davis & Masten (2014)
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• Alkalinity: sum of all titratable bases to a pH of 

approximately 4.5

(bicarbonate and carbonate are major contributors of 
alkalinity in natural waters)

�)01�2)*3 )�4)�525*6 = 	���
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7�4)�525*6 = 	���
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Include B(OH)4, PO4
3-, HPO4

2-, 

SiO(OH)3, etc. if significant
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• Unit of alkalinity

– Using molarity for each species, we get “eq/L”

– “eq”: equivalent, moles of H+ ion in an acid-base 

solution or electrons in a redox reaction

– More common unit is “mg/L as CaCO3”

– Unit conversion: 1 meq/L = 10-3 eq/L = 50 mg/L as 

CaCO3



• Textbook Ch2 p. 56-75
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