Chemical equilibrium

- For a reversible reaction

 aA + bB ⇐ cC + dD
 at chemical equilibrium,
 rate(forward rxn) = rate(reverse rxn)
- Equilibrium constant, K

$$K = \frac{\{C\}^{c} \{D\}^{d}}{\{A\}^{a} \{B\}^{b}}$$

For pure solid, activity = 1 For gases, activity = partial pressure

Chemical equilibrium: solubility

• For a precipitation-dissolution reaction $A_aB_b(s) \rightleftharpoons aA^{x+} + bB^{y-}$

$$K = \frac{\{A^{x+}\}^a \cdot \{B^{y-}\}^b}{\{A_a B_b\}}$$

as $\{A_aB_b\} = 1$ (pure solid), $K = \{A^{x+}\}^a \{B^{y-}\}^b$

• Solubility product, $K_s = {A^{x+}}^a {B^{y-}}^b$

Ionic strength

Ι

• Recall that $\{i\} = \gamma[i]$:

$$K_{s} = \{A^{x+}\}^{a} \{B^{y-}\}^{b} = (\gamma_{A}[A^{x+}])^{a} \cdot (\gamma_{B}[B^{y-}])^{b}$$

 Ionic strength, I: measure of interaction among ions in a solution

$$= \frac{1}{2} \sum C_i z_i^2$$

$$C_i = \text{molarity of the } i^{\text{th}} \text{ ion}$$

$$z_i = \text{charge of the } i^{\text{th}} \text{ ion}$$

Calculating activity coefficients

• Davies equation (for *I* < 0.5 M):

$$\log \gamma = -Az^2 \left(\frac{\sqrt{I}}{1+\sqrt{I}} - 0.2I\right)$$

A \approx 0.5 for water at 25°C z = charge of the ion

Selected solubility products (@ 25°C)

Substance	Equilibrium Reaction	pK _s	Application
Aluminum hydroxide	$Al(OH)_3(s) \Longrightarrow Al^{3+} + 3OH^{-}$	32.9	Coagulation
Aluminum phosphate	$AIPO_4(s) \Longrightarrow AI^{3+} + PO_4^{3-}$	22.0	Phosphate removal
Calcium carbonate (aragonite)	$CaCO_3(s) \Longrightarrow Ca^{2+} + CO_3^{2-}$	8.34	Softening, corrosion control
Ferric hydroxide	$Fe(OH)_3(s) \Longrightarrow Fe^{3+} + 3OH^-$	38.57	Coagulation, iron removal
Ferric phosphate	$FePO_4(s) \Longrightarrow Fe^{3+} + PO_4^{3-}$	21.9	Phosphate removal
Magnesium hydroxide	$Mg(OH)_2(s) \Longrightarrow Mg^{2+} + 2OH^{-}$	11.25	Removal of calcium and magnesium
Dolomite (CaMg(CO ₃) ₂) (ordered)	$CaMg(CO_3)_2 \rightleftharpoons Ca^{2+} + Mg^{2+} + 2CO_3^{2-}$	17.09	Weathering of dolomitic minerals
Kaolinite	$Al_2Si_2O_5(OH)_4 + 6H^+ $ $\implies 2Al^{3+} + 2Si(OH)_4 + H_2O$	7.44	Weathering of kaolinite clays
Gypsum	$CaSO_4 \cdot 2H_2O \Longrightarrow Ca^{2+} + SO_4^{2-} + 2H_2O$	4.58	Weathering of gypsum minerals

Chemical equilibrium: solubility

Q: Added 30g of $CaCO_3$ in water of make 1.00 L solution containing 0.01 M NaCl. Assuming Ca^{2+} in solution is at equilibrium with $CaCO_3(s)$, what would be the Ca^{2+} concentration?

$$(T = 25^{\circ}C, pK_s \text{ for } CaCO_3 = 8.48)$$

Chemical equilibrium: acid-base equilibria

• Ionization of water: $H_2O + H_2O = H_3O^+ + OH^-$

$$K = \frac{\left\{ OH^{-} \right\} \left\{ H_{3}O^{+} \right\}}{\left\{ H_{2}O \right\}^{2}}$$

 ${H_2O} = \gamma_{H_2O} \cdot [H_2O], \quad \gamma_{H_2O} \approx 1, \quad [H_2O] = 55.6M$

• Dissociation constant of water, K_w

$$K_w = K \cdot \{H_2 O\}^2 = \{OH^-\} \{H_3 O^+\}$$

Chemical equilibrium: acid-base equilibria

$$K_w = \{OH^-\}\{H_3O^+\}$$
 or $K_w = \{OH^-\}\{H^+\}$
 $pK_w = 14$ (at 25°C)

$$pH < 7 \longrightarrow \{H^+\} > \{OH^-\},$$
 acidic
 $pH > 7 \longrightarrow \{H^+\} < \{OH^-\},$ basic

Acid dissociation constant

 $HA = H^+ + A^-$

• Acid dissociation constant, K_a

$$K_a = \frac{\left[H^+\right]\!\!\left[A^-\right]}{\left[HA\right]}$$

- Strong acid = strong tendency to dissociate = high K_a = low pK_a
- Weak acid = only a small fraction dissociates = low K_a = high pK_a

Acid dissociation constant

Acid	Reaction	рК _а		
Hydrochloric acid	$HCI = H^+ + CI^-$	≈-3]	
Nitric acid	$HNO_3 = H^+ + NO_3^-$	-1	Strong	
Sulfuric acid	$H_2SO_4 = H^+ + HSO_4^-$	≈-3		
Bisulfate	$HSO_4^{-} = H^+ + SO_4^{-2-}$	1.9	J	
Acetic acid	$CH_3COOH = H^+ + CH_3COO^-$	4.75	1	
Carbonic acid	$H_2CO_3^* = H^+ + HCO_3^-$ $HCO_3^- = H^+ + CO_3^{2-}$	6.35 10.33	- Weak	
Phosphoric acid	$H_{3}PO_{4} = H^{+} + H_{2}PO_{4}^{-}$ $H_{2}PO_{4}^{-} H^{+} + HPO_{4}^{2-}$ $HPO_{4}^{2-} = H^{+} + PO_{4}^{3-}$	2.12 7.20 12.32		

Acid dissociation constant

Q: A solution of HOCl is prepared in water by adding 15 mg HOCl to a volumetric flask, and adding water to the 1.0 L mark. The final pH is measured to be 7.0. What are the concentrations of HOCl and OCl⁻? $(T = 25^{\circ}C)$

Chemical equilibrium: gas dissolution

 Henry's Law: partial pressure of a chemical in the gas phase is linearly proportional to the concentration of the chemical in the aqueous phase

$$P_{gas} = kC^*$$

where $P_{gas} =$ partial pressure in the gas phase
 $C^* =$ concentration in the water
 $k =$ constant

- The equilibrium/solubility product constants do not tell anything about the reaction rate!
- Differentiate <u>equilibrium</u> and <u>kinetics</u>

Reading assignment

• Textbook Ch2 p. 44-56

Reaction kinetics: study of the speed at which reactions proceed

 $aA + bB \rightarrow cC$

$$r_A = \frac{d[A]}{dt} = -k[A]^{\alpha}[B]^{\beta}$$

 r_A = reaction rate w.r.t. chemical A [conc./time] k = reaction rate constant $\alpha + \beta$ = reaction order

Reaction kinetics

Reaction order	Rate expression	Units on <i>k</i>
Zero	$r_A = -k$	(conc.)(time) ⁻¹
First	$r_A = -k[A]$	(time) ⁻¹
Second	$r_A = -k[A]^2$	(conc.) ⁻¹ (time) ⁻¹
Second	$r_A = -k[A][B]$	(conc.) ⁻¹ (time) ⁻¹

 Half-life (t_{1/2}): time required for the concentration to reach ½ of its initial conc.

Concentration units in water

• Weight percent, P

$$P = \frac{W}{W + W_0} \times 100\%$$

W = mass of substance (g) W_0 = mass of solute (g)

- ppm, ppb, ppt
- Molarity, M
- Normality, N (acid-base reaction)

$$N = nM$$
 $n = no. of protons transferred$

- Buffer: a solution that resists large changes in pH
- A solution of weak acid and its salt is a buffer
- Atmospheric CO₂ produces a natural buffer:

 $CO_2(g) + H_2O = H_2CO_3^* = H^+ + HCO_3^- = 2H^+ + CO_3^{2-}$

 $H_2CO_3^*$ = sum of true $H_2CO_3(aq)$ and $CO_2(aq)$

Acid dissociation:

 $H_2CO_3^* = H^+ + HCO_3^-$, $K_{a1} = 10^{-6.35}$ (at 25°C) $HCO_3^- = H^+ + CO_3^{2-}$, $K_{a2} = 10^{-10.33}$ (at 25°C)

Define C_T as:

 $C_T = [H_2 C O_3^*] + [H C O_3^-] + [C O_3^{2-}]$

Then:

$$[H_2 C O_3^*] = C_T \cdot \left(1 + \frac{K_{a1}}{[H^+]} + \frac{K_{a1} K_{a2}}{[H^+]^2}\right)^{-1}$$

$$K_{a1} \quad [H_2 C O_3^*]$$

$$[HCO_3^{-}] = \frac{K_{a1}}{[H^+]} \cdot [H_2CO_3^{*}]$$
$$[CO_3^{2-}] = \frac{K_{a1}K_{a2}}{[H^+]^2} \cdot [H_2CO_3^{*}]$$

If C_T is known, we can obtain the concentration of each species at a certain pH

Now, think of

$$K_{a1} = \frac{[H^+][HCO_3^-]}{[H_2CO_3^*]}$$

$$pH - pK_{a1} = \log \frac{[HCO_3^-]}{[H_2CO_3^*]}$$
If pH < pK_{a1}, [H₂CO₃*] > [HCO₃⁻]

 $(If pH - pK_{a1} = -2, [H_2CO_3^*] = 100[HCO_3^-])$

If pH > pK_{a1}, $[H_2CO_3^*] < [HCO_3^-]$

 $(If pH - pK_{a1} = 2, [HCO_3^{-}] = 100 [H_2CO_3^{*}])$

This applies to $HCO_3^{-1} - CO_3^{-2}$ relationship as well:

If pH < pK_{a2}, [HCO₃⁻] > [CO₃²⁻]

If $pH > pK_{a2}$, $[HCO_3^{-}] < [CO_3^{2-}]$

Actually this principle applies to any acids:

If pH < pK_a, <u>associated (protonated) form dominates</u>

If pH > pK_a, <u>dissociated</u> (deprotonated) form dominates

- 1. Closed system: C_T is constant
 - Solving for $pH < pK_{a1}$ region as an example
 - At this pH range, $H_2CO_3^*$ dominant:
 - $C_T \approx [H_2 C O_3^*]$ $\downarrow log[H_2 C O_3^*] \approx log C_T$
 - $[HCO_3^{-}] = \frac{K_{a1}}{[H^+]} \cdot [H_2CO_3^{*}] \quad \Longrightarrow \quad \log[HCO_3^{-}] = \log C_T pK_{a1} + pH$

$$\left[CO_{3}^{2^{-}}\right] = \frac{K_{a1}K_{a2}}{[H^{+}]^{2}} \cdot \left[H_{2}CO_{3}^{*}\right] \implies \log\left[CO_{3}^{2^{-}}\right] = \log C_{T} - pK_{a1} - pK_{a2} + 2pH$$

1. Closed system

2. Open system: constant $[H_2CO_3^*]$ $[H_2 C O_3^*] = K_H P_{CO_2} = (10^{-1.47} M/atm)(10^{-3.53} atm)$ $= 10^{-5.00} M$ (at 25°C), ambient air $[HCO_3^{-}] = \frac{K_{a1}}{[H^+]} \cdot [H_2CO_3^{*}] \quad \Longrightarrow \quad log[HCO_3^{-}] = log(K_HP_{CO_2}) - pK_{a1} + pH$ = -11.35 + pH $\left[CO_{3}^{2-}\right] = \frac{K_{a1}K_{a2}}{[H^{+}]^{2}} \cdot \left[H_{2}CO_{3}^{*}\right]$

$$iog[CO_3^{2-}] = log(K_H P_{CO_2}) - pK_{a1} - pK_{a2} + pH = -21.68 + 2pH$$

2. Open system

Davis & Masten (2014)

Alkalinity

• Alkalinity: sum of all titratable bases to a pH of approximately 4.5

 $Alkalinity = [HCO_3^{-}] + 2[CO_3^{2-}] + \dots + [OH^{-}] - [H^{+}]$

Include B(OH)₄, PO₄³⁻, HPO₄²⁻, SiO(OH)₃, etc. if significant

Carbonate alkalinity = $[HCO_3^{-}] + 2[CO_3^{2-}]$

(bicarbonate and carbonate are major contributors of alkalinity in natural waters)

Alkalinity

- Unit of alkalinity
 - Using molarity for each species, we get "eq/L"
 - "eq": equivalent, moles of H⁺ ion in an acid-base solution or electrons in a redox reaction
 - More common unit is "mg/L as $CaCO_3$ "
 - Unit conversion: $1 \text{ meq/L} = 10^{-3} \text{ eq/L} = 50 \text{ mg/L}$ as CaCO₃

Reading assignment

• Textbook Ch2 p. 56-75