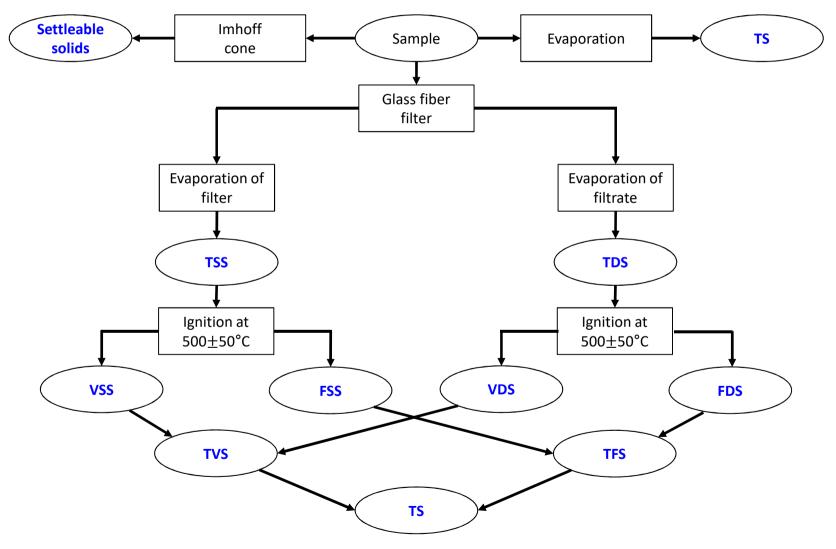
Physical characteristics of water

1

Today's class

- Solids content
- Turbidity, color, light absorption
- Taste and odor
- Temperature

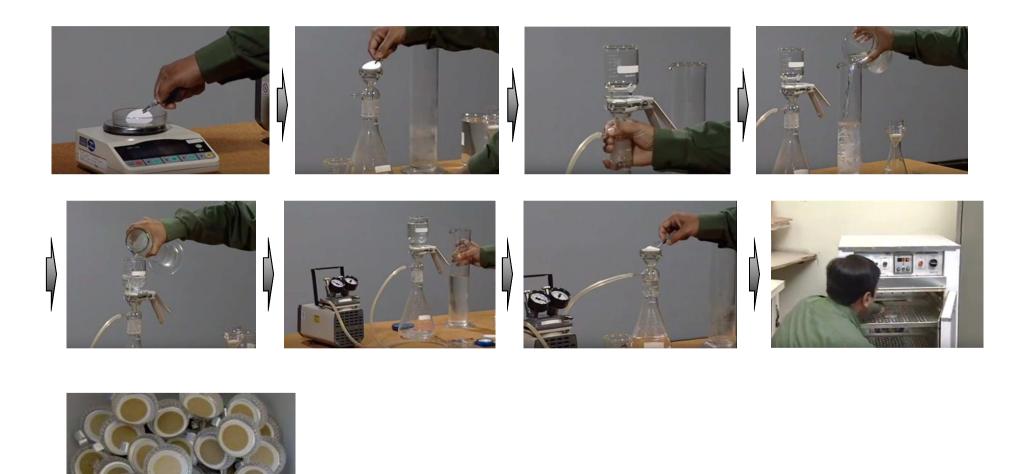

- All constituents of water other than water and dissolved gases
- Dissolved vs. suspended
 - Penetrates vs. retained on a filter
 - Filter with a pore size of 0.45 2 μ m is used
- Fixed vs. volatile
 - Remains vs. volatilized at $500\pm50^{\circ}$ C
 - Volatile solids are considered to be <u>organic</u>: used to differentiate organics and inorganics

Water constituents

Suspended matter

- Operationally defined as the material that retained on a 0.45 μm filter
- Colloids: 1 nm 1 μ m in size
- Includes mineral colloids, microorganisms and their debris, organic polymers
- Influences:
 - Contaminant transport
 - Light attenuation
 - Disinfection efficiency
 - Aquatic habitat

Solids – content analysis



Solids content analysis – settleable solids

Add 1L in Inhoff cone, wait for 1 hr for settling & record the volume of the thick, bottom layer (reported as mL/L)

Solids content analysis – suspended solids

Solids content analysis

Q: The following test results were obtained for a wastewater sample. All the tests were performance using a sample size of 50 mL. Determine the concentrations of TS, TVS, TSS, VSS, TDS, and VDS.

Mass of evaporating dish = 53.5433 g

Mass of evaporating dish + residue after evaporation at $105^{\circ}C = 53.5794 \text{ g}$ Mass of evaporating dish + residue after ignition at $500^{\circ}C = 53.5625 \text{ g}$ Mass of filter paper after drying at $105^{\circ}C = 1.5433 \text{ g}$ Mass of filter paper + residue after drying at $105^{\circ}C = 1.5554 \text{ g}$ Mass of filter paper + residue after ignition at $500^{\circ}C = 1.5476 \text{ g}$

Solids content analysis

Mass of evaporating dish = **53.5433** gMass of evaporating dish + residue after evaporation at 105°C = **53.5794** gMass of evaporating dish + residue after ignition at 500°C = **53.5625** gMass of filter paper after drying at 105°C = **1.5433** gMass of filter paper + residue after drying at 105°C = **1.5554** gMass of filter paper + residue after ignition at 500°C = **1.5476** g

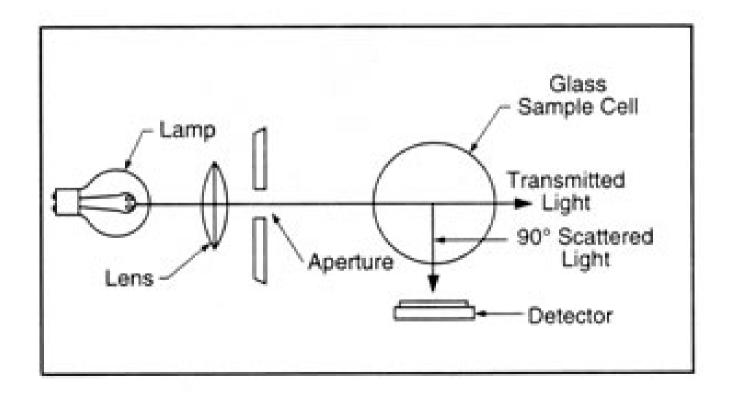
$$TS = \frac{(53.5794 - 54.5433) g \times 10^3 mg/g}{0.05 L} = 722 mg/L$$

$$TVS = \frac{(53.5794 - 54.5625) g \times 10^3 mg/g}{0.05 L} = 338 mg/L$$

$$TSS = \frac{(1.5554 - 1.5433) g \times 10^3 mg/g}{0.05 L} = 242 mg/L$$

$$VSS = \frac{(1.5554 - 1.5476) g \times 10^3 mg/g}{0.05 L} = 156 mg/L$$

TDS = TS - TSS = 722 - 242 = 480 mg/LVDS = TDS - VSS = 338 - 156 = 182 mg/L



- Natural water may have yellowish color
 - Major contributor: dissolved organic matter (DOM)
- Fresh wastewater is in light brownish-gray color; as anaerobic condition develops, the water gets darker and eventually turn black (septic water)
 - Black color due to formation of metal sulfides (ex: FeS)

Turbidity

- A measure of clarity of water
- Measured by the intensity of light scattered by a water sample

Turbidity

- Unit: nephelometric turbidity units (NTU)
- Suspended and colloidal matter increases turbidity
 - No general, direct relationship between TSS and turbidity, but at certain conditions, turbidity may be used to estimate TSS

$$\begin{split} TSS, mg/L \; \cong \; TSS_f \times T & TSS_f = \textit{conversion factor, mg TSS/L/NTU} \\ ex: 2.3-2.4 \textit{ for secondary effluent;} \\ 1.3-1.6 \textit{ for secondary eff. filtered by} \\ sand \textit{ filter} \\ T = \textit{turbidity, NTU;} \end{split}$$

- Turbidity can be measure real-time, on-line (cf. TSS cannot)

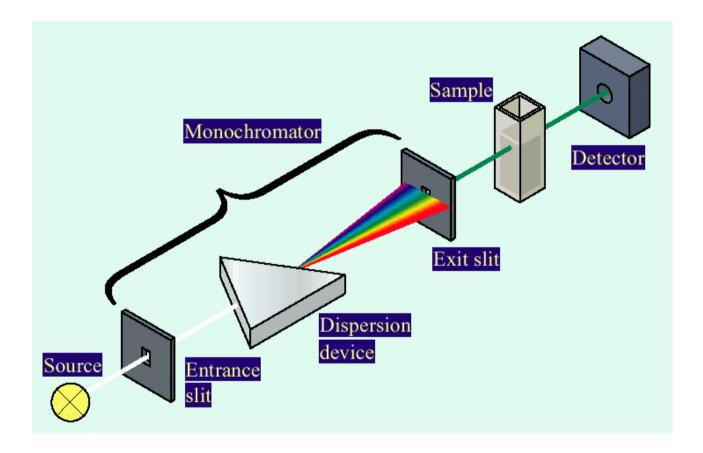
Light absorption

Absorbance

- A measure of the amount of light absorbed by the constituents in a solution
- Typically measured at a wavelength of 254 nm using a spectrophotometer
- Function of solute property, concentration, light path length, and light wavelength

 $A(\lambda) = \log_{10}(I_0/I) = \varepsilon(\lambda)Cx$

 $A(\lambda)$ = absorbance at wavelength λ (unitless)


 I_0 = light intensity at light source (mW/cm²)

I = light intensity at distance x from the light source (mW/cm²)

- $\varepsilon(\lambda)$ = molar absorptivity of the light-absorbing solute at wavelength λ (L/mole-cm)
- *C* = concentration of light-absorbing solute (mole/L)

x = light path length (cm)

Light absorption

- Absorptivity $k(\lambda) = \frac{A(\lambda)}{x} = \varepsilon(\lambda)C$ $k(\lambda) = \text{absorptivity (cm⁻¹)}$

Taste and odor

- Quite subjective property
- Use blind testing

HelloDD	
왕과 귀인을 맛습니다.(주)대면난	뉴스

독자톡톡 라이프

캘린더

♠홈> 뉴스

물 맛·냄새 감별법으로 '맛있는 물' 만든다

^ 천윤정기자 │ 쯔 kularz@hellodd.com │ ⊙ 입력 2007.06.04 10:19 │ 티 댓글 0

수공, 30명 패널 훈련 최종 '맛' 테스트로 완벽 기해

마트에 가보면 스위스 청정 암반에서 추출했다는 물에서부터 불소와 칼슘이 많이 들어 있어 끓이지 않고 도 분유를 탈 수 있다는 일본 유아용 물까지 생수의 등급과 종류가 가지각색이다. 1代당 1만원에 가까운 가격에도 불구하고 몸에 좋고 맛도 색다르다는 소문에 '불티나게' 팔리고 있는 생수도 있다. 현재 국내 생 수시장 규모는 3천500억원에 달하고 있으며 최근에는 메뉴판에 오직 물만 적혀있는 '물 카페가 등장할 정도로 생수는 수돗물과는 비교할 수 없는 신뢰를 얻고 있다. 그런데 정말 수돗물은 생수보다 못한 걸까? **수돗물의 '누명'?** "친구들이 저에게 수돗물을 마시냐고 묻죠. 저 뿐 아니라 여기 직원들 모두 수돗물을 먹 고 있습니다. 마셔보면 물 맛도 좋고 냄새도 나지 않습니다." 대전 수자원공사 수돗물분석연구센터에 근 무하는 방석배 수질연구실 과장은 사람들의 수돗물에 대한 거부감과 편견에 대해 안타까워하며 말했다. 실제 수공 뿐 아니라 정부과천청사 장관실에 공급하는 페트(PET)병 물도 생수가 아니다. 한국수자원공 사 대청댐 청주 정수장에서 생산한 'K-WATER'다. 여의도 벚꽃 축제장, 하이서울 페스티벌에서 나눠준 물

Odor

- Offensive odor usually occur in anaerobic conditions
- Can be reported as "Threshold Odor Concentration (TOC)"

Odorous compounds in water

Odorous compound	Chemical formula	Odor quality
Amines	CH_3NH_2 , $(CH_3)_3NH_2$	Fishy
Ammonia	NH ₃	Ammoniacal
Diamines	$NH_2(CH_2)_4NH_2$, $NH_2(CH_2)_5NH_2$	Decayed flesh
Hydrogen sulfide	H ₂ S	Rotten eggs
Mercaptans	CH_3SH , $CH_3(CH_2)SH$, $(CH_3)_3CSH$, $CH_3(CH_2)_3SH$	Decayed cabbage or skunk
Organic sulfides	(CH ₃) ₂ S, (C ₆ H ₅) ₂ S	Rotten cabbage
Skatole	C ₉ H ₉ N	Fecal matter

Odor

• TOC determination example

mL sample	mL pure water	Odor
100 mL	0 mL	Present
50 mL	50 mL	Present
25 mL	75 mL	Barely detectable
10 mL	90 mL	Absent

TOC = 100 *mL* / 25 *mL* = 4

Temperature

- Chemical and biochemical reaction rates increase with temperature
 - van't Hoff-Arrhenius relationship

$$\frac{d(\ln k)}{dT} = \frac{E}{RT^2}$$

$$k = reaction rate constant$$

$$T = temperature (K)$$

$$E = activation energy (J/mole)$$

$$R = ideal gas constant (8.314 J/mole-K)$$

- Modification of van't Hoff-Arrhenius relationship For a practical range of water temperature, $E/RT^2 \approx constant$

$$\frac{k_2}{k_1} = \theta^{(T_2 - T_1)}$$

$$k_1 = reaction rate at T_1$$

$$k_2 = reaction rate at T_2$$

$$\theta = temperature coefficient$$

van't Hoff-Arrhenius when E/RT²≈const.

$$d(\ln k) = \frac{E}{R} \cdot \frac{dT}{T^2}$$

$$\int_{lnk_1}^{lnk_2} d(\ln k) = \frac{E}{R} \int_{T_1}^{T_2} \frac{dT}{T^2}$$

$$lnk_2 - lnk_1 = \frac{E}{R} \left(\frac{1}{T_1} - \frac{1}{T_2}\right)$$

$$\frac{k_2}{k_1} = exp \left[\frac{E}{RT_1T_2}(T_2 - T_1)\right]$$

$$let \quad \theta = exp \left(\frac{E}{RT_1T_2}\right)$$

$$\frac{k_2}{k_1} = \theta^{(T_2 - T_1)}$$

Temperature

- Gas solubility decrease with temperature
 ex) saturated dissolved oxygen DO: 13.1 mg/L @ 4°C, 9.1 mg/L @ 20°C,
 7.5 mg/L @ 30°C
- Most organisms have distinct temperature ranges within which they reproduce and compete
- Slightly higher temp. in domestic wastewater and much higher temp. in cooling water → can damage aquatic ecosystem
 - Low saturation DO, faster oxygen consumption rate by microorganisms
 DO depletion
 - Direct effect of temperature increase on aquatic organisms
- Heat recovery from wastewater of current interest

Key references

• Textbook sec 2-3, 2-4

Next class

- Chemical characteristics of water I
 - Dissolved ions
 - Macronutrients: N, P, S
 - pH and EC
 - Alkalinity, hardness, and sodium adsorption ratio