Chemical characteristics of water

Major ionic species in water

Cations	Anions
Calcium (Ca ²⁺)	Bicarbonate (HCO ₃ -)
Magnesium (Mg ²⁺)	Sulfate (SO ₄ ²⁻)
Sodium (Na+)	Chloride (Cl ⁻)
Potassium (K+)	

- Derived from contact of the water with mineral deposits
- Relatively high in groundwater, low in surface water
- Determining the accuracy of water ion content analysis:

$$\left|\sum anions - \sum cations\right| \le \left(0.1065 + 0.0155 \sum anions\right)$$

- Most dissolved inorganics are in ionic form
 - Major nonionic: silica (SiO₂)

Major ionic species in water

Q: Determine the acceptability of the following water analysis.

Cations	Conc. (mg/L)
Ca ²⁺	93.8
Mg^{2+}	28.0
Na ⁺	13.7
K ⁺	30.2

Anions	Conc. (mg/L)
HCO ₃ -	164.7
SO ₄ ²⁻	134.0
Cl ⁻	92.5

Minor ionic species in water

Cations		Anions	
Aluminum (Al ³⁺)	Copper (Cu ²⁺)	Bisulfate (HSO ₄ -)	Nitrite (NO ₂ -)
Ammonium (NH ₄ +)	Iron, ferrous (Fe ²⁺)	Bisulfite (HSO ₃ -)	Phosphate, mono- (H ₂ PO ₄ -)
Arsenic (As+)	Iron, ferric (Fe ³⁺)	Carbonate (CO ₃ ²⁻)	Phosphate, di- (HPO ₄ ²⁻)
Barium (Ba ²⁺)	Manganese (Mn ²⁺)	Fluoride (F ⁻)	Phosphate, tri- (PO ₄ ³⁻)
Borate (BO ₄ ³⁻)		Hydroxide (OH ⁻)	Sulfide (S ²⁻)
		Nitrate (NO ₃ -)	Sulfite (SO ₃ ²⁻)

- Mostly derived from contact of the water with mineral deposits
- Some from bacterial and algal activity (ex: NH₄⁺, NO₃⁻, NO₂⁻, CO₃²⁻, S²⁻)

N&P

- Essential for life
- Most often limiting nutrients in the environment

Nitrogen (N)

- Exist in various oxidation states: +5, +3, +2, +1, 0, -2, -3
- Important nitrogen-containing compounds for water quality
 - Organic nitrogen; ammonia (NH₃), nitrite (NO₂-), nitrate (NO₃-), urea [CO(NH₂)₂], nitrogen gas (N₂)

- Nitrogen cycle: Uptake by organisms
 - Uptake by microorganisms and plants: NH₃ (most common), NO₃⁻,
 N₂ → produce proteins
 - Conversion of N₂ to organic-N by bacteria is called "nitrogen fixation" (by limited number of bacterial species)
 - Human contribution to nitrogen cycle: Haber-Bosch process $N_2 + 3H_2 \rightarrow 2NH_3$
 - Uptake by animals and humans: nitrogen must be in organic form (protein)
- Nitrogen cycle: release from organisms
 - Animals excrete urea and other forms of organic-N (ex: proteins)
 - Dead organisms → release organic-N into the environment

- Nitrogen cycle: Fate of released N in the environment
 - Organic-N is degraded by bacteria to urea and NH₃
 - Urea is easily hydrolyzed to NH₃
 Urea hydrolysis

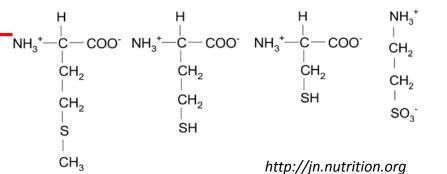
Ammonia is oxidized serially by certain groups of bacteria:

$$NH_4^+ + 1.5 O_2$$
 $NH_4^+ + 1.5 O_2$
 $NITrosomonas$
 $NO_2^- + 2H_2O + 4H^+$
 $NITrobacter$
 $NO_2^- + O_2$
 $NITrobacter$
 $NITrobacter$
 $NITrobacter$

<nitrification>

• Nitrate and nitrite is reduced by various types of bacteria to produce nitrogen gas (N₂) by series of reactions:

$$NO_3^- \rightarrow NO_2^- \rightarrow NO \rightarrow N_2O \rightarrow N_2$$


(note: N₂O is a potent greenhouse gas)

<denitrification>

- Measurement of nitrogen in water
 - Each ionic species can be measured by ion chromatography or colorimetric methods
 - Organic nitrogen is determined by the Kjeldahl method: organic-N
 is degraded by acid and heat to ammonium and then ammonium
 content is determined
 - Total Kjeldahl nitrogen (TKN) = organic-N + ammonia-N

Phosphorus (P)

- Used..
 - in fertilizers
 - for corrosion control in water supply and industrial cooling water
 - in synthetic detergents
- P-containing compounds relevant to water quality
 - Orthophosphates: PO₄³⁻, HPO₄²⁻, H₂PO₄⁻, H₃PO₄
 - Can be directly utilized by organisms
 - Easily measured by colorimetric methods / ion chromatography
 - Polyphosphates $((PO_3)_6^{3-}, P_3O_{10}^{5-}, P_2O_7^{4-}, ...)$ and organic phosphates
 - Needs breakdown to orthophosphates for biological metabolism / analysis

Sulfur (S)

- Essential element for life
 - C, H, O, N, S, P, K, ...
 - Required in the synthesis of proteins, released when protein degrades
- Reduced biologically under anaerobic conditions

Organic matter
$$+SO_4^{2-} \rightarrow S^{2-} + H_2O + CO_2$$

- Anaerobic conditions occur in sediment, subsurface, sewers, and anaerobic processes in wastewater treatment
- The sulfide ion (S⁻²) may combine with hydrogen to form hydrogen sulfide gas (H₂S)

$$S^{2-} + 2H^+ \rightarrow H_2S$$

pH

$$pH = -log_{10}[H^+]$$

Ionization constant of water

$$[H^+][OH^-] = K_W \qquad K_W = 10^{-14} \text{ at } 25^{\circ}\text{C}$$
 $p \equiv -log_{10} \ \, \Rightarrow \ \, pH + pOH = 14 \, \, \text{at } 25^{\circ}\text{C}$

Q: pH in pure H₂O at 25°C?

Electrical conductivity (EC)

- A measure of an ability of a solution to conduct an electrical current
- Unit: millisiemens per meter (mS/m) or microsiemens per centimeter (µS/cm)
- Electrical current is transported by ions in a solution
 related to the concentration of ions in a solution

Conductivity meter & probe http://coleparmer.com

Electrical conductivity (EC)

- Conversion between EC and ionic concentration
 - Conc. of each ionic species in water and EC

$$EC \cong \sum_{i} (C_i \times f_i)$$
 $EC = electrical \ conductivity \ (\mu S/cm)$ $C_i = conc. \ of \ ionic \ species \ i \ in \ solution \ (meq/L)$ $f_i = conversion \ factor$

Cations	f_i [(μ S/cm)·(meq/L) ⁻¹]	Anions	f_i [(μ S/cm)·(meq/L) ⁻¹]
Ca ²⁺	52.0	HCO ₃ -	43.6
Mg ²⁺	46.6	CO ₃ ²⁻	84.6
K ⁺	72.0	Cl-	75.9
Na ⁺	48.9	NO ₃ -	71.0
		SO ₄ ²⁻	73.9

Electrical conductivity (EC)

- Conversion between EC and ionic concentration
 - Applying generic composition of ionic species in water, EC can be used to estimate the ionic strength and TDS of a solution

$$I = EC (in \,\mu S/cm) \times (1.6 \times 10^{-5})$$

Tchobanoglous & Schroeder (1985) Water Quality

$$TDS (mg/L) = EC (in \, \mu S/cm) \times (0.55 - 0.70)$$

Metcalf, Eddy, AECOM (2014) Wastewater Engineering

Alkalinity

- The capacity of water to neutralize acid
- Determined by titrating water with a strong acid to pH=4.5

$$Alk (eq/L) = (HCO_3^-) + (CO_3^{2-}) + \dots + (OH^-) - (H^+)$$

$$= [HCO_3^-] + 2[CO_3^{2-}] + \dots + [OH^-] - [H^+]$$

Include $B(OH)_4$, PO_4^{3-} , HPO_4^{2-} , $SiO(OH)_3$, etc. if significant

– Most of the time, practically:

$$Alk (eq/L) \cong [HCO_3^-] + 2[CO_3^{2-}] + [OH^-]$$

— Most of the time, at neutral pH:

$$Alk (eq/L) \cong [HCO_3^-]$$

More common unit for Alk:

"mg/L as $CaCO_3$ "

Conversion

Alk (in mg/L as $CaCO_3$)

= Alk (in meq/L) x 50 mg $CaCO_3$ /meq

Hardness

The term used to characterize a water that does not lather

well (react with soap to form a scum)

 Caused by polyvalent cations in water (+2, +3, ...); mostly Ca²⁺ & Mg²⁺

 These ions are also easily precipitated to produce scales in pipes transporting hot water

$$Ca^{2+} + 2HCO_3^- \xrightarrow{\Delta H} CaCO_3 + CO_2 + H_2O$$

http://www.watersoftenerbest. blogspot.com

Hardness

- Total hardness (TH)
 - Technically: the sum of all polyvalent cations

$$TH(eq/L) = (Ca^{2+}) + (Mg^{2+}) + (Fe^{3+}) + (Fe^{2+}) + (Ba^{2+}) + \dots = \sum_{i=1}^{N} (X^{m+})_i$$

Practically (most of the time): the sum of Ca²⁺ & Mg²⁺

$$TH(eq/L) \cong (Ca^{2+}) + (Mg^{2+}) = 2[Ca^{2+}] + 2[Mg^{2+}]$$

"mg/L as CaCO₃" is more common for hardness as well!

- Carbonate hardness (CH) and noncarbonate hardness (NCH)
 - CH: the maximum amount of hardness that can be associated with carbonates (HCO₃⁻ and CO₃²⁻)
 - NCH = TH CH
 - When **TH > Alk** (≈ $[HCO_3^-]$): **CH = Alk**, NCH = TH CH
 - When TH \leq Alk: CH = TH, NCH = 0

Sodium adsorption ratio (SAR)

- Related to the agricultural production
 - Important property for irrigation water
- High sodium (Na⁺) content in soil reduces soil permeability!
 - Most clay surfaces are negatively (-) charged
 - → Cations are attached to clay surfaces
 - Attachment of Na⁺ ion on clay surfaces
 - → swelling of clay
 - \rightarrow soil pore size \downarrow
 - \rightarrow soil permeability \downarrow
 - \rightarrow crop productivity \downarrow
 - So, irrigation of water with high Na⁺ content can result in replacement of Ca²⁺ and Mg²⁺ in soil, resulting in low crop productivity

Sodium adsorption ratio (SAR)

$$SAR = \frac{(Na^{+})}{\sqrt{\frac{(Ca^{2+}) + (Mg^{2+})}{2}}}$$

SAR < 3: low risk

 $3 \le SAR \le 6$: slight to moderate risk

SAR > 6: high risk

Organic content

- Contaminated water contains various kinds of organic compounds
 - Proteins, carbohydrates, fats and oils, urea, etc. from food and human wastes
 - Synthetic organic compounds
 - Organics released to waters → consumption of dissolved oxygen by microorganisms → anaerobic (septic) condition → destroy aquatic environment (ex: fish kills), odor problems, production of toxic compounds, etc.
 - Removal of organic compounds is one of the major target for wastewater treatment
- Measurement of organic content as a whole
 - Biochemical oxygen demand (BOD)
 - Chemical oxygen demand (COD)
 - Total organic carbon (TOC)

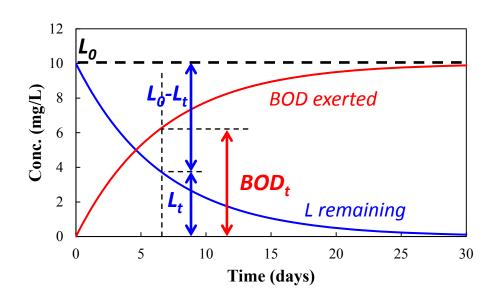
BOD

 Measurement of dissolved oxygen used by microorganisms in the biochemical oxidation of organic matter

BOD test procedure

- The water sample is diluted such that the difference between the DO before and after the test can be determined (estimated BOD: 2-6 mg/L)
- The diluted water sample inoculated with microorganisms that degrade organic matter
- The diluted, inoculated water sample is incubated for a certain time period (usually 5 days)
- The DO before and after the incubation is measured to determine the BOD of the sample

BOD


Modeling BOD reaction: <u>assume first-order reaction</u>

$$\frac{d(L_t)}{dt} = -k_1 L_t$$

 L_t = amount of organics remaining at time t (d) expressed in oxygen equivalents (mg O_2/L) k_1 = first-order rate constant (1/d)

Integrating from t=0 to t,

$$L_t = L_0(e^{-k_1 t})$$

Note
$$BOD_t = L_0 - L_t$$
 $L_0 = UBOD$

UBOD = ultimate BOD (mg/L)

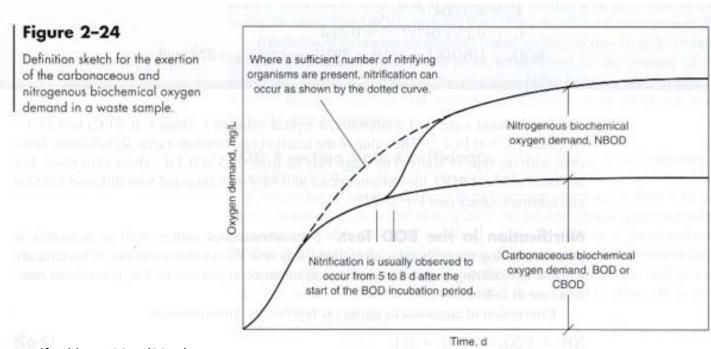
BOD

$$\rightarrow BOD_t = UBOD - L_t = UBOD(1 - e^{-k_1 t})$$

 BOD_t = the BOD value at time t (mg/L)

- Temperature effect
 - modified van't Hoff-Arrhenius relationship:

$$k_{1_T} = k_{1_{20}} \theta^{T-20}$$


$$T = temperature in \ \mathcal{C}$$

- Typically used value of θ : 1.056 (20-30°C) / 1.135 (4-20°C)

NBOD vs. CBOD

 Ammonia-nitrogen in wastewater may significantly contribute to the total oxygen demand by nitrification:

$$NH_3 + 2O_2 \rightarrow HNO_3 + H_2O$$

NBOD vs. CBOD

- The oxygen demand associated with the oxidation of ammonia is referred to as nitrogenous biochemical oxygen demand (NBOD)
- Carbonaceous biochemical oxygen demand (CBOD): the oxygen demand associated with the oxidizable carbon in the sample
- When NBOD is significant, nitrification is suppressed by adding chemical agents for the measurement of CBOD

COD

- Measured by oxidizing the organic compounds in water using a strong oxidizing agent
- Oxidizing agent: potassium dichromate $(K_2CrO_7 more common)$ or potassium permanganate $(KMnO_4)$
- Can be fractionated into particulate and soluble COD
 - Soluble COD: readily biodegradable / nonbiodegradable
 - Particulate COD: slowly biodegradable / nonbiodegradable

COD

COD > BOD because:

- Many organics that are difficult to be oxidized biologically can be oxidized chemically (ex: lignin)
- Inorganic substances in water may be oxidized by chemical oxidizing agents
- Certain organic substances may be toxic to microorganisms used in the BOD test
- When microorganisms grow, they utilize some fraction of organic compounds to synthesize cells instead of oxidizing them

TOC

- Measures all organic carbon in a water sample including those that cannot be chemically/biologically oxidized
- Can be fractionated into particulate/soluble TOC
- Three steps for measurement
 - Acidification: add acid to reduce the pH → removes carbonate species (inorganic carbon) from water
 - Oxidation: use heat, oxygen, ultraviolet radiation, or combination of those to oxidize organic carbon to CO₂
 - Quantification: measure the amount of CO₂ production with an infrared analyzer or other means
- TOC: measures amount of <u>C</u> / BOD & COD: measures amount of <u>O</u>₂ consumed by oxidation
 - → different COD/TOC ratio for different compounds!

BOD, COD, & TOC

Q: Determine the theoretical ratios of BOD_5/COD and COD/TOC for an organic compound represented by $C_5H_7O_2N$. Use the following assumptions:

- The compound can be completely mineralized biologically
- Only CBOD is considered for BOD
- The BOD first-order reaction rate constant, k_1 , is 0.23/d

Individual organic compounds

- Some organic compounds have particular toxicity to humans and aquatic organisms → have to be regulated individually
- Sources
 - Commercial and industrial wastewater
 - Disinfection byproducts
 - Surface runoff from agricultural land (ex: pesticides)
 - Surface runoff from urban area (ex: oil spill, additives used for vehicles, sealant for pavements)
 - Pharmaceuticals and personal care products (PPCPs)
 - Mostly not regulated currently, but of recent interest

