Chemical characteristics of water I

Major ionic species in water

Cations	Anions
Calcium (Ca ²⁺)	Bicarbonate (HCO ₃ -)
Magnesium (Mg ²⁺)	Sulfate (SO ₄ ²⁻)
Sodium (Na+)	Chloride (Cl ⁻)
Potassium (K+)	

- Derived from contact of water with mineral deposits
- Relatively high in groundwater, low in surface water
- Determining the accuracy of water ion content analysis:

$$\left|\sum anions - \sum cations\right| \le \left(0.1065 + 0.0155 \sum anions\right)$$

* ∑ values in meq/L

- Most dissolved inorganics are in ionic form
 - Major nonionic: silica (SiO₂)

Major ionic species in water

Q: Determine the acceptability of the following water analysis.

Cations	Conc. (mg/L)
Ca ²⁺	93.8
Mg^{2+}	28.0
Na ⁺	13.7
K ⁺	30.2

Anions	Conc. (mg/L)
HCO ₃ -	164.7
SO ₄ ²⁻	134.0
Cl ⁻	92.5

Minor ionic species in water

Cations		Anions	
Aluminum (Al ³⁺)	Copper (Cu ²⁺)	Bisulfate (HSO ₄ -)	Nitrite (NO ₂ -)
Ammonium (NH ₄ +)	Iron, ferrous (Fe ²⁺)	Bisulfite (HSO ₃ -)	Phosphate, mono- (H ₂ PO ₄ -)
Arsenic (As+)	Iron, ferric (Fe ³⁺)	Carbonate (CO ₃ ²⁻)	Phosphate, di- (HPO ₄ ²⁻)
Barium (Ba ²⁺)	Manganese (Mn ²⁺)	Fluoride (F ⁻)	Phosphate, tri- (PO ₄ ³⁻)
Borate (BO ₄ ³⁻)		Hydroxide (OH ⁻)	Sulfide (S ²⁻)
		Nitrate (NO ₃ -)	Sulfite (SO ₃ ²⁻)

- Mostly derived from contact of the water with mineral deposits
- Some from bacterial and algal activity (ex: NH₄⁺, NO₃⁻, NO₂⁻, CO₃²⁻, S²⁻)

Nutrients

N & P as major nutrients of interest

- Essential for life
- Most often limiting nutrients in the environment

Nitrogen (N)

- Exist in various oxidation states: +5, +3, +2, +1, 0, -2, -3
- Important nitrogen-containing compounds for water quality
 - Organic nitrogen; ammonia (NH₃), nitrite (NO₂⁻), nitrate (NO₃⁻), urea [CO(NH₂)₂], nitrogen gas (N₂)

Nitrogen cycle in the environment

Nitrogen cycle

- Uptake by organisms
 - − Uptake by microorganisms and plants: NH_3 (most common), NO_3^- , $N_2 \rightarrow$ produce proteins
 - Conversion of N₂ to organic-N by bacteria is called "nitrogen fixation" (by limited number of bacterial species)
 - Human contribution to nitrogen cycle: Haber-Bosch process $N_2 + 3H_2$ → $2NH_3$
 - Uptake by animals and humans: nitrogen must be in organic form (protein)
- Release from organisms
 - Animals excrete urea and other forms of organic-N (ex: proteins)
 - Dead organisms → release organic-N into the environment

Nitrogen cycle

- Fate of N released into the environment
 - Organic-N is degraded by bacteria to urea and NH₃
 - Urea is easily hydrolyzed to NH₃
 Urea hydrolysis

Ammonia is oxidized serially by certain groups of bacteria:

$$NH_4^+ + 1.5 O_2$$
 $\xrightarrow{Nitrosomonas}$ $NO_2^- + 2H_2O + 4H^+$
 $2NO_2^- + O_2$ $\xrightarrow{Nitrobacter}$ $2NO_3^-$

Nitrogen cycle

 Nitrate and nitrite is reduced by various types of bacteria to produce nitrogen gas (N₂) by series of reactions:

$$NO_3^- \rightarrow NO_2^- \rightarrow NO \rightarrow N_2O \rightarrow N_2$$

<denitrification>

- Note nitrous oxide (N₂O) is a potent greenhouse gas (greenhouse gas potential 265-298 time greater than CO₂)
- N₂O may be released as an intermediate of both nitrification and denitrification

Measurement of N in water

- Each ionic species can be measured by ion chromatography or colorimetric methods
- Organic nitrogen is determined by the Kjeldahl method: organic-N is degraded by acid and heat to ammonium and then ammonium content is determined
- Total Kjeldahl nitrogen (TKN) = organic-N + ammonia-N
- To determine organic-N only by the Kjeldahl method, the water is first heated to remove NH₃ by volatilization

General methods for measuring ions

Colorimetric method

- Add chemical agents that will react with the compound to be measured to form products that have a color
- Measure absorbance by spectrophotometer or compare the color with standards

Ion chromatography (IC)

- Sample is injected to a column which has different affinity to different ions
- An eluent continuously flushes the column and the ions flow out of the column at different times
- Concentration of each ion is determined by measuring electrical conductivity

Phosphorus (P)

- Used...
 - in fertilizers
 - for corrosion control in water supply and industrial cooling water
 - in synthetic detergents
- P-containing compounds relevant to water quality
 - Orthophosphates: PO₄³⁻, HPO₄²⁻, H₂PO₄⁻, H₃PO₄
 - Can be directly utilized by organisms
 - Easily measured by colorimetric methods / ion chromatography
 - Polyphosphates ((PO₃)₆³⁻, P₃O₁₀⁵⁻, P₂O₇⁴⁻, ...) and organic phosphates
 - Needs breakdown to orthophosphates for biological metabolism / analysis

Sulfur (S)

- Essential element for life
 - C, H, O, N, S, P, K, ...
 - Required in the synthesis of proteins, released when protein degrades

METHIONINE

Reduced biologically under anaerobic conditions

Organic matter
$$+SO_4^{2-} \rightarrow S^{2-} + H_2O + CO_2$$

- Anaerobic conditions occur in sediment, subsurface,
 sewers, and anaerobic processes in wastewater treatment
- The sulfide ion (S⁻²) may combine with hydrogen to form hydrogen sulfide gas (H₂S)

$$S^{2-} + 2H^+ \rightarrow H_2S$$

pH

$$pH = -log_{10}[H^+]$$

Ionization constant of water

$$[H^+][OH^-] = K_W \qquad K_W = 10^{-14} \text{ at } 25^{\circ}\text{C}$$
 $p \equiv -log_{10} \ \, \Rightarrow \ \, pH + pOH = 14 \text{ at } 25^{\circ}\text{C}$

Q: pH in pure H₂O at 25°C?

Electrical conductivity (EC)

- A measure of an ability of a solution to conduct an electrical current
- Unit: millisiemens per meter (mS/m) or microsiemens per centimeter (µS/cm)
- Electrical current is transported by ions in a solution
 related to the concentration of ions in a solution

Conductivity meter & probe http://coleparmer.com

Electrical conductivity (EC)

- Conversion between EC and ionic concentration
 - Conc. of each ionic species in water and EC

$$EC \cong \sum_{i} (C_i \times f_i)$$
 $EC = electrical \ conductivity \ (\mu S/cm)$ $C_i = conc. \ of \ ionic \ species \ i \ in \ solution \ (meq/L)$ $f_i = conversion \ factor$

Cations	f_i [(μ S/cm)·(meq/L) ⁻¹]	Anions	f_i [(μ S/cm)·(meq/L) ⁻¹]
Ca ²⁺	52.0	HCO ₃ -	43.6
Mg^{2+}	46.6	CO ₃ ²⁻	84.6
K ⁺	72.0	Cl-	75.9
Na ⁺	48.9	NO ₃ -	71.0
		SO ₄ ²⁻	73.9

Electrical conductivity (EC)

- Conversion between EC and ionic concentration
 - Applying generic composition of ionic species in water, EC can be used to estimate the ionic strength and TDS of a solution

$$I = EC (in \,\mu S/cm) \times (1.6 \times 10^{-5})$$

Tchobanoglous & Schroeder (1985) Water Quality

$$TDS (mg/L) = EC (in \, \mu S/cm) \times (0.55 - 0.70)$$

Metcalf, Eddy, AECOM (2014) Wastewater Engineering

Alkalinity

- The capacity of water to neutralize acid
- Determined by titrating water with a strong acid to pH=4.5

$$Alk (eq/L) = (HCO_3^-) + (CO_3^{2-}) + \dots + (OH^-) - (H^+)$$

$$= [HCO_3^-] + 2[CO_3^{2-}] + \dots + [OH^-] - [H^+]$$
side

Include $B(OH)_4$, PO_4^{3-} , HPO_4^{2-} , $SiO(OH)_3$, etc. if significant

– Most of the time, practically:

$$Alk (eq/L) \cong [HCO_3^-] + 2[CO_3^{2-}] + [OH^-]$$

— Most of the time, at neutral pH:

$$Alk (eq/L) \cong [HCO_3^-]$$

More common unit for Alk:

"mg/L as $CaCO_3$ "

Conversion

Alk (in mg/L as $CaCO_3$)

= Alk (in meq/L) x 50 mg $CaCO_3$ /meq

Hardness

The term used to characterize a water that does not lather

well (react with soap to form a scum)

 Caused by polyvalent cations in water (+2, +3, ...); mostly Ca²⁺ & Mg²⁺

 These ions are also easily precipitated to produce scales in pipes transporting hot water

$$Ca^{2+} + 2HCO_3^- \xrightarrow{\Delta H} CaCO_3 + CO_2 + H_2O$$

http://www.watersoftenerbest. blogspot.com

Hardness

- Total hardness (TH)
 - Technically: the sum of all polyvalent cations

$$TH(eq/L) = (Ca^{2+}) + (Mg^{2+}) + (Fe^{3+}) + (Fe^{2+}) + (Ba^{2+}) + \dots = \sum_{i=1}^{m} (X^{m+})_i$$

Practically (most of the time): sum of Ca²⁺ & Mg²⁺

$$TH(eq/L) \cong (Ca^{2+}) + (Mg^{2+}) = 2[Ca^{2+}] + 2[Mg^{2+}]$$

"mg/L as CaCO₃" is more common for hardness as well!

- Carbonate hardness (CH) and noncarbonate hardness (NCH)
 - CH: the maximum amount of hardness that can be associated with carbonates (HCO₃⁻ and CO₃²⁻)
 - NCH = TH CH
 - When TH > Alk: CH = Alk, NCH = TH CH
 - When TH \leq Alk: CH = TH, NCH = 0

Sodium adsorption ratio (SAR)

- Related to the agricultural production
 - Important property for irrigation water
- High sodium (Na+) content in soil reduces soil permeability!
 - Most clay surfaces are negatively (-) charged
 - → Cations are attached to clay surfaces
 - Attachment of Na⁺ ion on clay surfaces
 - → swelling of clay by introduction of water molecules between clay sheets
 - \rightarrow soil pore size \downarrow
 - \rightarrow soil permeability \downarrow
 - \rightarrow crop productivity \downarrow
 - So, irrigation of water with high Na⁺ content can result in replacement of Ca²⁺ and Mg²⁺ in soil, resulting in low crop productivity

Clay swelling by water addition

Savage et al., Ski report, 2005

Sodium adsorption ratio (SAR)

$$SAR = \frac{(Na^{+})}{\sqrt{\frac{(Ca^{2+}) + (Mg^{2+})}{2}}}$$

Note:

Here, () denotes <u>meq/L</u>, not eq/L

SAR < 3: low risk

 $3 \le SAR \le 6$: slight to moderate risk

SAR > 6: high risk