Chemical characteristics of water II

Organic content

- Contaminated water contains various kinds of organic compounds
 - Proteins, carbohydrates, fats and oils, urea, etc. from food and human wastes
 - Synthetic organic compounds
 - Organics released to waters → consumption of dissolved oxygen by microorganisms → anaerobic (septic) condition → destroy aquatic environment (ex: fish kills), odor problems, production of toxic compounds, etc.
 - Removal of organic compounds is one of the major target for wastewater treatment
- Measurement of organic content as a whole
 - Biochemical oxygen demand (BOD)
 - Chemical oxygen demand (COD)
 - Total organic carbon (TOC)

• Measurement of dissolved oxygen used by microorganisms in the biochemical oxidation of organic matter

• BOD test procedure

- The water sample is diluted such that the difference between the DO before and after the test can be determined (estimated BOD: 2-6 mg/L)
- The diluted water sample is inoculated with microorganisms that degrade organic matter
- The diluted, inoculated water sample is incubated for a certain time
- period (usually 5 days)
 The DO before and after the incubation is measured to determine the BOD of the sample

BOD

Modeling BOD reaction: <u>assume first-order reaction</u>

$$\frac{d(L_t)}{dt} = -k_1 L_t$$

 L_t = amount of organics remaining at time t (d) expressed in oxygen equivalents (mg O₂/L) k_1 = first-order rate constant (1/d)

Integrating from *t*=0 to *t*,

$$L_t = L_0(e^{-k_1 t})$$

Note BOD_t = L₀ - L_t L₀ = UBOD

UBOD = ultimate BOD (mg/L)

BOD

$$\rightarrow BOD_t = UBOD - L_t = UBOD(1 - e^{-k_1 t})$$

 BOD_t = the BOD value at time t (mg/L)

- Temperature effect
 - modified van't Hoff-Arrhenius relationship:

$$k_{1_T} = k_{1_{20}} \theta^{T-20}$$

T = temperature in °C

Typically used value of θ:
 1.056 (20-30°C) / 1.135 (4-20°C)

NBOD vs. CBOD

• Ammonia-nitrogen in wastewater may significantly contribute to the total oxygen demand by nitrification:

 $NH_3 + 2O_2 \rightarrow HNO_3 + H_2O$

NBOD vs. CBOD

- The oxygen demand associated with the oxidation of ammonia is referred to as nitrogenous biochemical oxygen demand (NBOD)
- Carbonaceous biochemical oxygen demand (CBOD): the oxygen demand associated with the oxidizable carbon in the sample
- When NBOD is significant, nitrification is suppressed by adding chemical agents for the measurement of CBOD

- Measured by oxidizing the organic compounds in water using a strong oxidizing agent
- Oxidizing agent: potassium dichromate (K₂CrO₇ more common) or potassium permanganate (KMnO₄)
- Can be fractionated into particulate and soluble COD
 - Soluble COD: readily biodegradable / nonbiodegradable
 - Particulate COD: slowly biodegradable / nonbiodegradable

• COD > BOD because:

- Many organics that are difficult to be oxidized biologically can be oxidized chemically (ex: lignin)
- Inorganic substances in water may be oxidized by chemical oxidizing agents
- Certain organic substances may be toxic to microorganisms used in the BOD test
- When microorganisms grow, they utilize some fraction of organic compounds to synthesize cells instead of oxidizing them

- Measures all organic carbon in a water sample including those that cannot be chemically/biologically oxidized
- Can be fractionated into particulate/soluble TOC
- Three steps for measurement
 - Acidification: add acid to reduce the pH → removes carbonate species (inorganic carbon) from water
 - Oxidation: use heat, oxygen, ultraviolet radiation, or combination of those to oxidize organic carbon to CO₂
 - Quantification: measure the amount of CO₂ production with an infrared analyzer or other means
- TOC: measures amount of <u>C</u> / BOD & COD: measures amount of <u>O</u>₂ consumed by oxidation

 \rightarrow different COD/TOC ratio for different compounds!

Q: Determine the theoretical ratios of BOD_5/COD and COD/TOC for an organic compound represented by $C_5H_7O_2N$. Use the following assumptions:

- The compound can be completely mineralized biologically
- Only CBOD is considered for BOD
- The BOD first-order reaction rate constant, k_1 , is 0.23/d

Individual organic compounds

- Some organic compounds have particular toxicity to humans and aquatic organisms → have to be regulated individually
- Sources
 - Commercial and industrial wastewater
 - Disinfection byproducts
 - Surface runoff from agricultural land (ex: pesticides)
 - Surface runoff from urban area (ex: oil spill, additives used for vehicles, sealant for pavements)
 - Pharmaceuticals and personal care products (PPCPs)
 - Mostly not regulated currently, but of recent interest

http://istc.Illinois.edu