Chemical characteristics of water II

1

Today's class

- Gross indicators of organic content
 - Biochemical oxygen demand (BOD)
 - Chemical oxygen demand (COD)
 - Total organic carbon (TOC)
- Individual organic compounds

Organic compounds in water

- Contaminated water contains various kinds of organic compounds
 - Proteins, carbohydrates, fats and oils, urea, etc. from food and human wastes
 - Synthetic organic compounds
 - Organics released to waters → consumption of dissolved oxygen by microorganisms → anaerobic (septic) condition → destroy aquatic environment (ex: fish kills), odor problems, production of toxic compounds, etc.
 - Removal of organic compounds is one of the major target for wastewater treatment
- Measurement of organic content as a whole
 - Biochemical oxygen demand (BOD)
 - Chemical oxygen demand (COD)
 - Total organic carbon (TOC)

• Measurement of dissolved oxygen used by microorganisms in the biochemical oxidation of organic matter

• BOD test procedure

- The water sample is diluted such that the difference between the DO before and after the test can be determined (estimated BOD: 2-6 mg/L)
- The diluted water sample is inoculated with microorganisms that degrade organic matter
- The diluted, inoculated water sample is incubated for a certain time period (usually 5 days)
- The DO before and after the incubation is measured to determine the BOD of the sample

BOD

Modeling BOD reaction: <u>assume first-order reaction</u>

$$\frac{d(L_t)}{dt} = -k_1 L_t$$

 L_t = amount of organics remaining at time t (d) expressed in oxygen equivalents (mg O₂/L) k_1 = first-order rate constant (1/d)

Integrating from *t*=0 to *t*,

$$L_t = L_0(e^{-k_1 t})$$

 $BOD_t = L_0 - L_t$ $L_0 = UBOD$

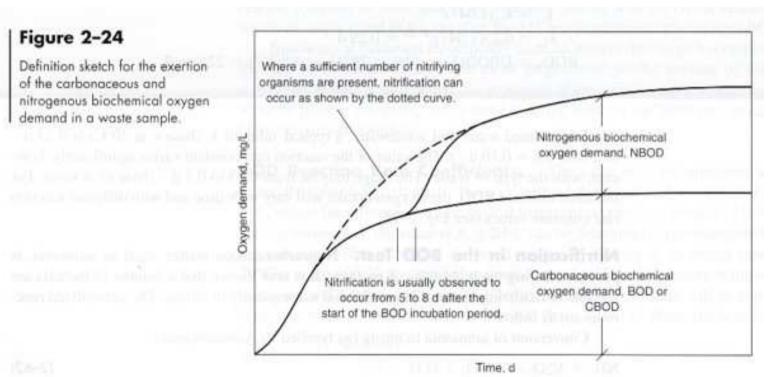
UBOD = ultimate BOD (mg/L)

BOD

$$\rightarrow BOD_t = UBOD - L_t = UBOD(1 - e^{-k_1 t})$$

 BOD_t = the BOD value at time t (mg/L)

- Temperature effect
 - modified van't Hoff-Arrhenius relationship:


$$k_{1_T} = k_{1_{20}} \theta^{T-20}$$

T = temperature in °C

Typically used value of θ:
1.056 (20-30°C) / 1.135 (4-20°C)

NBOD vs. CBOD

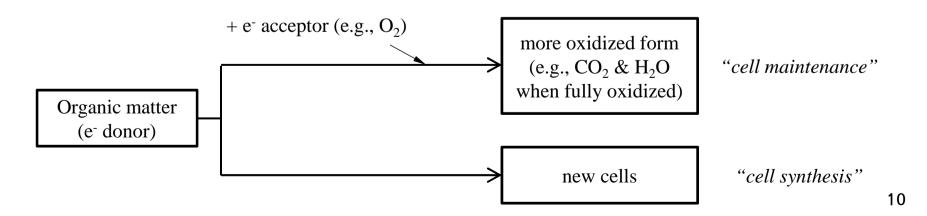
• Ammonia-nitrogen in wastewater may significantly contribute to the total oxygen demand by nitrification:

 $NH_3 + 2O_2 \rightarrow HNO_3 + H_2O$

NBOD vs. CBOD

- The oxygen demand associated with the oxidation of ammonia is referred to as nitrogenous biochemical oxygen demand (NBOD)
- Carbonaceous biochemical oxygen demand (CBOD): the oxygen demand associated with the oxidizable carbon in the sample
- When NBOD is significant, nitrification is suppressed by adding chemical agents for the measurement of CBOD

- Measured by oxidizing the organic compounds in water using a strong oxidizing agent
- Oxidizing agent: potassium dichromate (K₂Cr₂O₇ more common) or potassium permanganate (KMnO₄)
- Can be fractionated into particulate and soluble COD
 - Soluble COD: readily biodegradable / nonbiodegradable
 - Particulate COD: slowly biodegradable / nonbiodegradable



COD vs BOD

• COD > BOD because:

- Many organics that are difficult to be oxidized biologically can be oxidized chemically (ex: lignin)
- Inorganic substances in water may be oxidized by chemical oxidizing agents
- Certain organic substances may be toxic to microorganisms used in the BOD test
- When microorganisms grow, they utilize some fraction of organic compounds to synthesize cells instead of oxidizing them

TOC Analyzer at Waste Management & Resource Recirculation Lab., SNU

- Measures all organic carbon in a water sample including those that cannot be chemically/biologically oxidized
- Can be fractionated into particulate/soluble TOC
- Three steps for measurement
 - Acidification: add acid to reduce the pH → removes carbonate species (inorganic carbon) from water
 - Oxidation: use heat, oxygen, ultraviolet radiation, or combination of those to oxidize organic carbon to CO₂
 - Quantification: measure the amount of CO₂ production with an infrared analyzer or other means
- TOC: measures amount of <u>C</u> / BOD & COD: measures amount of <u>O</u>₂ consumed by oxidation

 \rightarrow different COD/TOC ratio for different compounds!

Q: Determine the theoretical ratios of BOD_5/COD and COD/TOC for an organic compound represented by $C_5H_7O_2N$. Use the following assumptions:

- The compound can be completely mineralized biologically
- Only CBOD is considered for BOD
- The BOD first-order reaction rate constant, k_1 , is 0.23/d

BOD, COD, & TOC

1) BOD₅/COD

Assume UBOD=COD as the compound can be completely mineralized biologically

$$\frac{BOD_5}{COD} = \frac{BOD_5}{UBOD} = 1 - \exp(-k_1 t) = 1 - \exp(-0.23/d \times 5d)$$
$$\frac{BOD_5}{COD} = 0.68$$

2) COD/TOC

The reaction to completely mineralize the organic compound can be written as

$$C_5H_7O_2N+5O_2\rightarrow 5CO_2+NH_3+2H_2O$$

Formula weight: 113

BOD, COD, & TOC

COD per g compound is calculated as:

$$\frac{5 \times 32 \ g \ O_2}{113 \ g \ C_5 H_7 O_2 N} = 1.42 \ g \ COD/g \ C_5 H_7 O_2 N$$

This value will be utilized later in this class for modeling biological wastewater treatment!

TOC per g compound is calculated as:

$$\frac{5 \times 12 \ g \ C}{113 \ g \ C_5 H_7 O_2 N} = 0.53 \ g \ TOC/g \ C_5 H_7 O_2 N$$

$$\frac{COD}{TOC} = \frac{1.42}{0.53} = 2.68$$

BOD, COD, & TOC

cf) CH₄ (methane) COD/TOC value

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O$$

COD per g CH_4 :

$$\frac{2 \times 32 \ g \ O_2}{16 \ g \ CH_4} = 4.0 \ g \ COD/g \ CH_4$$

TOC per g CH₄:

$$\frac{1 \times 12 \ g \ C}{16 \ g \ CH_4} = 0.75 \ g \ TOC/g \ CH_4$$

 $\frac{COD}{TOC} = \frac{4.0}{0.75} = 5.33$

COD/TOC ratio is much higher for CH_4 than for $C_5H_7O_2N$ (2.68). Can you find the reason why?

Individual organic compounds

- Some organic compounds have particular toxicity to humans and aquatic organisms → have to be regulated individually
- Sources
 - Commercial and industrial wastewater
 - Disinfection byproducts
 - Surface runoff from agricultural land (ex: pesticides)
 - Surface runoff from urban area (ex: oil spill, additives used for vehicles, sealant for pavements)
 - Pharmaceuticals and personal care products (PPCPs)
 - Mostly not regulated currently, but of recent interest

Korean regulatory standards: COD \rightarrow TOC

9) 9090년 1월 1이브터 저요디느 기주

IV지역

10(10) 이하

25(25) 이하

10(10) 이하

20(20)

17

하수도법 시행규칙

[공공하수처리시설의 방류수 수질기준] (2022. 12. 9. 개정)

1. 방류수 수질기준

												2) 2020년 1월 1일부터 적용되는 기군				
Γ	1) 2011	1년 1월 1일부터 2019년 12월 31일까지 적용되는 기준 적용기간 및 수질기준 2011. 1. 1.2012. 1. 1.부터 2012. 12 .31, 2013. 1. 1.부터 2019. 12. 31.										구 분	수질기준			
	구 분 생물화학적 산소요구량 (BOD) (mg/L)	2011. 1. 1. 부터	까지				2010. 1. 1.부터 2019. 12. 51. 까지					ਾ ਦ	I 지역	표지역	Ⅲ지역	Τ
		2011. 12. 31. 까지	I 지역	Ⅱ지역	Ⅲ지역	IV지역	I 지역	Ⅱ지역	Ⅲ지역	IV지역		생물화학적 산소요구량 (BOD)	10(10) 이하	10(10) 이하	10(10) 이하	
			20(30) 이하	20(30) 이하	20(30) 이하	20(30) 이하	10(10) 이하	10(10) 이하	10(10) 이하	10(10) 이하		(<u>mg/L)</u> 총유기 탄소량 (TOC)	15(25) 이하	15(25) 이하	25(25) 이하	
	화학적 산소요구량 (COD) (mg/L)	40(40) 이하	40(40) 이하	40(40) 이하	40(40) 이하	40(40) 이하	20(40) 이하	20(40) 이하	40(40) 이하	40(40) 이하		(mg/L) 부유물실 (SS) (mg/L)	10(10) 이하	10(10) 이하	10(10) 이하	
	부유물질 (SS) (mg/L)	20(30) 이하	20(30) 이하	20(30) 이하	20(30) 이하	20(30) 이하	10(10) 이하	10(10) 이하	10(10) 이하	10(10) 이하		총질소	20(20)	20(20)	20(20)	
	총질소 (T-N) (mg/L) 총인	40(60) 이라	40(60) 이하	40(60) 이하	40(60) 이하	40(60) 이하	20(20) 이하	20(20) 이하	20(20) 이하	20(20) 이하						

Key references

• Textbook sec 2-6, 2-7

Next class

- Biological characteristics of water
 - Types of microorganisms
 - Cell components, genetic molecules, enzymes
 - Classification of organisms
 - Analyzing genetic molecules of organisms
 - Enumeration and identification of bacteria