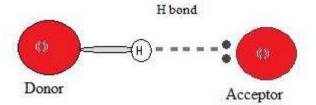
Organic chemistry background IV


Hydrogen donors and acceptors

Hydrogen (bond) donors

An ion or molecule which possesses a hydrogen atom attached to a relatively electronegative atom such that the hydrogen can participate in a hydrogen bond

Hydrogen (bond) acceptors

An electronegative ion or molecule which possesses a lone electron pair in order to form a hydrogen bond

Electron donating and withdrawing groups

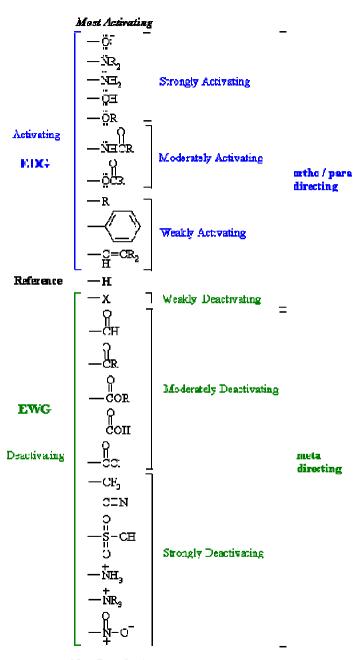
- A functional group attached to a carbon atom in an organic molecule may affect the reactivity of the molecule
 - ex) Nitration of a substituted benzene

R	Reaction rate relative to benzene	Product ratio			Comments
		ortho	meta	para	
CH ₃	25	63%	3%	34%	Activated (ortho/para directed)
CF ₃	2.5 x 10 ⁻⁵	6%	91%	3%	Deactivated (meta directed)

3

Electron donating and withdrawing groups

Electron donating groups


- Increase the electron density of the aromatic ring
- Make the molecule more nucleophilic (activated)
- The molecule tends to react with electrophiles at ortho- & para-sites

$$\begin{bmatrix} \vdots \\ D \\ \delta^{-} \\ \vdots \\ \delta^{-} \\ \delta^{-} \\ \vdots \\ \delta^{-}$$

Electron withdrawing groups

- Decrease the electron density of the aromatic ring
- Make the molecule less nucleophilic (deactivated)
- The molecule tends to react with electrophiles at meta-sites

$$\begin{bmatrix} \mathbf{w} & -\mathbf{w} & -\mathbf{w} \\ & & & \\ & &$$



Alcohols, phenols and ethers

Alcohols: R-OH(R: alkyl group)

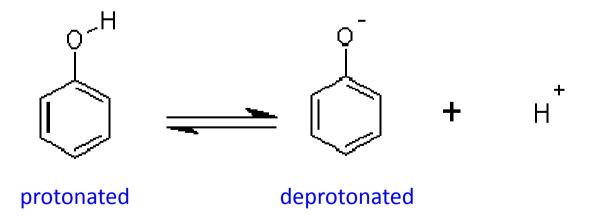
Phenols: R-OH(R: aromatic group)

– Ethers: R₁-O-R₂

methyl-t-butyl-ether (MTBE, gasoline additive)

methyl-phenyl-ether (anisole, methoxy-benzene)

polychlorinated dibenzop-dioxines (PCDDs, 175 possible congeners)


polychlorinated dibenzofurans (PCDFs, 135 possible congeners)

Alcohols, phenols and ethers

- Oxygen atoms participate in hydrogen bonds: significant changes in physicochemical properties of the molecule
- R-OH: may act as both H-donor and H-acceptor
- R₁-O-R₂: acts only as an H-acceptor
- Dissociation of a R-OH group
 - R-OH group may dissociate in water (renders H⁺) → act as a weak acid
 - Especially for phenols
 - Greater dissociation tendency for phenols substituted with electronwithdrawing substituents

Dissociation of phenols

Compound	pK _a	Dominant species at pH=7.0	
phenol	9.95	protonated (>99.9%)	
2,4-dichlorophenol	7.90	protonated (~89%)	
pentachlorophenol	4.90	deprotonated (>99.9%)	

Aldehyde and keto groups

- C=O bonds
- Aldehyde: C-CHO; keto: R₁-CO-R₂
- H-acceptors
- Quite reactive

formaldehyde (disinfectant, chemical intermediate)

acrolein (chemical intermediate for polymer production)

acetaldehyde (chemical intermediate, solvent)

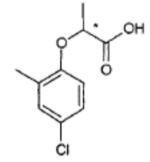
acetone (chemical intermediate, solvent)

isobutylaldehyde (chemical intermediate, solvent, desinfection byproduct in drinking water)

2-butanone (solvent)

benzaldehyde (chemical intermediate, solvent)

methyl phenylketone (acetophenone; chemical intermediate, solvent)


Carboxylic groups

- R-COOH
- May dissociate in aqueous solution (pK_a in the range of 0-6)
- Both strong H-donors and acceptors

acetic acid

trichloroacetic acid (herbicide, atmospheric breakdown product of chlorinated solvents)

benzoic acid (food preservative, additive, chemical intermediate)

 $\begin{array}{c|c}
\bullet & R \longrightarrow 0 \\
\bullet & O \\
\hline
\end{array}$ $\begin{array}{c|c}
\bullet & O \\
R \longrightarrow (-1) \\
\bullet & O
\end{array}$

(R,S)-2-(4-chloro-2-methyl phenyl) - propionic acid ((R,S)-mecoprop; herbicide)

Ester groups

- R₁-COO-R₂; -OH of a carboxylic acid is replaced by a –OR group
- Act only as a H-acceptor (smaller impact on a compound's water solubility)
- ex) phthalates: often used as plasticizers

Nitrogen-containing functional groups

Table 2.5 Some Important Nitrogen-Containing Functional Groups Present in Anthropogenic Organic Compounds

Group	Name (oxidation state of nitrogen)	Group	Name (oxidation state of nitrogen)
R ₂ + + + + + R ₃	ammonium (-III)	R ₁ -NH-NH-R ₂	hydrazo (-II)
R ₁ -N R ₂	$amino^a$ (-III) (amine)	R_1 $N=N$ R_2	azo (-I)
R ₁ N R ₂	carboxylic acid amide ^a (-III)	R-N H	hydroxyl-amine (-I)
R-C=N	cyano, nitrilo (-III)	R-N	nitroso (+I)
R ₁ N R ₃ R ₃	urea (-III)	R-N-0	nitro (+III)
R ₁	carbamate (-III)	R-O-N-0	nitrato (+V) (nitrate)

[&]quot;Primary if $R_2 = R_3 = H$; secondary if $R_2 = H$ and $R_3 \neq H$; tertiary if $R_2 \neq H$ and $R_3 \neq H$.

Nitrogen-containing functional groups

Amine groups

- Types: primary/secondary/tertiary
- Natural/synthetic compounds
 - Natural example: amino acids
 - Synthetic example: anilines (intermediate for synthesis of dyes, pharmaceuticals, pesticides, antioxidants, ...), atrazine (pesticide)
- Acts as both H-acceptors and donors
 - H-acceptors: to a lesser extent
 - H-donors: only for primary and secondary amines
- Slightly basic: acquire a proton in an aqueous solution to form a cationic ammonium species

(a triazine herbicide)

Amino Group

Amino Acid Structure

Side Chain

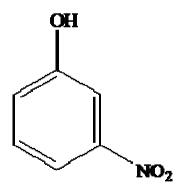
Group

aniline and substituted anilines (chemical intermediates)

13

Nitrogen-containing functional groups

Nitro groups


- Widely used in the chemical industry
 - Explosives (ex: TNT), agrochemicals (ex: DNOC), dyes (ex: Dispersive Blue 79)
- Strong electron-withdrawing characteristics
 - Significantly affect the electron distribution in a molecule
 - Significantly affect the chemical properties of the compound
- Explosives: multiple nitro groups in the molecules
 - Nitro group as built-in oxidant
 - Very fast oxidation of the molecule

14

Dissociation of nitrophenols

Compound	рК _а
phenol	9.95
2-nitrophenol (ortho)	7.17
3-nitrophenol (meta)	8.28

ortho-Nitrophenol or 2-Nitrophenol

meta-Nitrophenol or 3-Nitrophenol

Examples of explosives containing nitro groups

Sulfur-containing functional groups

Table 2.6 Some Important Sulfur-Containing Functional groups Present in Anthropogenic Organic Compounds

Group	Name (oxidation state of sulfur)	Group	Name (oxidation state of sulfur)
R-SH	thiol, mercaptan (-II)	O 	sulfonic acid (+IV)
R ₁ -S-R ₂	thioether, sulfide (-II)	R ₁ -S-O-R ₂	sulfonic acid ester (+IV)
R ₁	thiocarbonyl (-II)	R ₁ -S-N 	sulfonic acid amide, sulfonamide (+IV)
R ₁ -S-S-R ₂	disulfide (-I)	R ₁ -0-S-0-R ₂	sulfuric acid ester, sulfate (+VI)
O II S Rz	sulfoxide (0)		
R ₁ -S-R ₂	sulfone (+II)		