# Stoichiometry of Biochemical Reactions I



- Major type of biochemical reactions redox reactions
- What is and what can be done with stoichiometry
- Substrate electron partitioning and cell yield

### **Oxidation-reduction (redox) reactions**

- Involves changes in the oxidation state
- If there are oxidizing species, there should be reducing species as well
  - Total # of electrons are conserved
  - Oxidizing species e<sup>-</sup> donor / Reducing species –
     e<sup>-</sup> acceptor
- Essential for life many important biological processes involve redox reactions
  - Involves large free energy change ( $\Delta G$ )

### **Biological benefit of redox reactions**

Examples:

photosynthesis of glucose:  $6CO_2 + 6H_2O + sunlight \rightarrow C_6H_{12}O_6 + 6O_2$ 

 $\Delta G^{0}$ =+2880 kJ/mol C<sub>6</sub>H<sub>12</sub>O<sub>6</sub>

Sunlight energy is converted to chemical energy (storable)

respiration using glucose:

 $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$   $\Delta G^0 = -2880 \text{ kJ/mol } C_6H_{12}O_6$ 

Chemical energy is released, enabling cells to work

### **Stoichiometry**

- "An aspect of chemistry concerned with mole relationships among reactants and products"
- Simply put, balancing chemical reactions
- Based on mass conservation
  - Conservation of elements
  - Conservation of electrons (for redox reactions)

# What can we do with stoichiometry?

A balanced biochemical reaction example (ethanol fermentation of glucose at  $f_s=0.22$ )

 $0.0417C_{6}H_{12}O_{6} + 0.011 \text{ NH}_{4}^{+} + 0.011 \text{ HCO}_{3}^{-}$ 

→  $0.011C_5H_7O_2N + 0.065C_2H_5OH + 0.076CO_2 + 0.044H_2O$ [Bacterial cells]

Available information:

Using 1 g (or 1 mole) of glucose,

- How much ethanol can be produced?
- How much nutrients ( $NH_4$ -N) are required?
- How much biomass is produced?
- How much alkalinity is consumed?

# **Cell formula**

- Most common: C<sub>5</sub>H<sub>7</sub>O<sub>2</sub>N
- What is the theoretical COD-per-weight value for a bacterial cell (i.e., g COD / g cells)?
  - Once you get trained with the stoichiometry, you will be able to write the balanced reaction as:

 $C_5H_7O_2N + 5O_2 \rightarrow 5CO_2 + NH_3 + 2H_2O$ 

Then you get: 1.42 g COD/g cells

You will find this value useful in the future!

### Substrate partitioning



### Cell yield

• True yield, Y

Y = (g cells produced) / (g substrate utilized)

• Conversion of  $f_s^0$  to Y:

 $Y = f_s^{\ 0} \frac{(M_c \ g \ cells/mole \ cells)}{(n_e \ e^- \ eq \ cells/mole \ cells)(8 \ g \ COD/e^- \ eq \ donor)}$ 

For  $C_5H_7O_2N$ ,  $M_c = 113$  g/mole;  $n_e = 20 e^- eq/mole$  (see Table 2.3) then:  $Y(in g cells/g COD) = 0.706 f_s^{-0}$ 

9

### Microbial growth rate

$$\frac{dX_a}{dt} = Y\left(-\frac{dS}{dt}\right) - bX_a$$
growth decay

 $X_a$  = active biomass concentration [M/L<sup>3</sup>] S = substrate concentration [M/L<sup>3</sup>] Y = true yield [M/M] b = decay rate [1/T]



- Generally assumed to be proportional to the amount of cells
- A gross factor for anything that leads to decrease in cell biomass
- Decay = endogenous respiration (+ predation)
  - Endogenous respiration: use of cell matter for maintenance of cell functions (motility, repair, resynthesis, osmotic regulation, transport, compensate heat loss, ...)

### Net yield

• Net yield, Y<sub>n</sub>

Y<sub>n</sub> = (g net cell growth) / (g substrate utilized)

$$= \frac{dX_a/dt}{-dS/dt}$$
$$= Y - b \frac{X_a}{-dS/dt}$$

### Net yield



Bacterial growth curve for pure culture

### Net yield

• Electron partitioning considering net yield, Y<sub>n</sub>:

$$f_s^{\ 0} \rightarrow f_s \qquad (f_s < f_s^{\ 0})$$
$$f_e^{\ 0} \rightarrow f_e \qquad (f_e > f_e^{\ 0})$$

still,  $f_s + f_e = 1$ 

### **Energy reactions**

 Microorganisms need energy for growth and maintenance
 ΔG<sup>0</sup> (in kJ/mole glucose)

Aerobic oxidation:

 $C_6H_{12}O_6 + 6O_2 \rightarrow 6CO_2 + 6H_2O$ 

Denitrification:

 $5C_6H_{12}O_6 + 24NO_3^- + 24H^+ \rightarrow 30CO_2 + 42H_2O + 12N_2$  -2,720

-2,880

Sulfate reduction:

$$2C_6H_{12}O_6 + 6SO_4^{2-} \rightarrow 12CO_2 + 12H_2O + 3H_2S + 3HS^-$$
 -492

Methanogenesis:

$$C_{6}H_{12}O_{6} \rightarrow 3CO_{2} + 3CH_{4} -428$$

$$C_{6}H_{12}O_{6} + 3CO_{2} \rightarrow 6CO_{2} + 3CH_{4})$$

**Ethanol fermentation:** 

$$C_6H_{12}O_6 \rightarrow 2CO_2 + 2C_2H_5OH -244$$
 15