Acid-base systems I

Weak acids & bases

- Many of the important properties of natural waters and wastewaters are due to the presence of weak acid, weak bases, and their salts
 - Carbonate species (HCO₃⁻ & CO₃²⁻) in natural waters and their buffering effect
 - Ammonia speciation (NH₃ & NH₄⁺) in water
 - Speciation of hypochlorous acid (HOCl & OCl⁻) in chlorine disinfection
- Monoprotic vs. polyprotic acids
 - Monoprotic: contains only one exchangeable H⁺ ion ex: HCl, HOCl, CH₃COOH
 - Polyprotic: contains two or more exchangeable H⁺ ions
 ex: H₂SO₄, H₂CO₃, H₃PO₄

• 10⁻³ M CH₃COOH (HAc) is added in pure water at 25°C. What will be the pH of the water? What will be the HAc and Ac-concentrations?

Reaction: $HAc + H_2O = H_3O^+ + Ac^-$

$$C_T = 10^{-3} \text{ M, pK}_a = 4.75 \text{ (at } 25^{\circ}\text{C)}$$

Species involved (4):

$$H^+$$
 (H_3O^+), OH^- , HAc , Ac^-

Need 4 equations!

Equilibrium constants:

Mass balance:

Charge balance (electroneutrality):

Assuming $[H^+] >> [OH^-]$ (acidic), we can solve the equation to get

$$[H^+] = \frac{-K_a + \sqrt{{K_a}^2 + 4K_aC_T}}{2}$$

As
$$K_a = 10^{-4.75}$$
 & $K_w = 10^{-14}$ at 25°C,
$$[H^+] = 1.25 \times 10^{-4} \, M \qquad \text{(pH=3.9)}$$

$$[OH^-] = 8.00 \times 10^{-11} \, M \qquad \text{(assumption holds)}$$

$$[Ac^-] = 1.25 \times 10^{-4} \, M \qquad \text{(A weak acid } \rightarrow \text{ partial dissociation)}$$

$$[HAc] = 8.75 \times 10^{-4} \, M$$

The question can be solved using [H⁺] as a major variable:

(2) + (3):
$$[Ac^{-}] = \frac{C_T K_a}{K_a + [H^{+}]}$$
 (5)

(3) + (5):
$$[HAc] = \frac{C_T[H^+]}{K_a + [H^+]}$$
 (6)

(1):
$$[OH^-] = \frac{K_w}{[H^+]}$$
 (7)

This is called a "pH-pC diagram"

Actually drawing the pH-pC diagram for a monoprotic acid is quite simple!

For different C_T (acetic acid, pK_a=4.75):

For different K_a ($C_T = 10^{-3}$ M):

Q: What if there are multiple acids in water?

ex)	Acids	C _T (M)	pK _a	
	HAc	10 ⁻⁶	4.75	
	HOCI	10-3	7.53	
	HCN	10-4	9.40	

Dominant vs. Trace acid/base systems

So:

- Usually one or two acid/base systems dominate a system, setting the pH value
- All other trace acid/base systems will adjust to the pH value

(dissociated according to the pH value set by the dominant acid/base systems)

What about a "salt" of a "conjugate base" of a weak acid?

HAC +
$$H_2O$$
 = H_3O^+ + Ac^-
Acid Base Conjugate Conjugate acid base

Brønsted-Lowry acid & base

- Brønsted-Lowry acid: any substance that can donates a proton (i.e., proton donor)
- Brønsted-Lowry base: any substance that can accepts a proton (i.e., proton acceptor)

NaAc as an example:

Equilibrium constants

$$K_w = [H^+][OH^-]$$

$$K_a = \frac{[H^+][Ac^-]}{[HAc]}$$

Mass balance

Charge balance

$$C_T = 10^{-3} M$$

pK_a = 4.75

Mass balance + charge balance:

$$[OH^-] = [HAc] + [H^+]$$

pH buffer

Weak acid + salt of its conjugate base

Microorganism growth medium example

Bushnell Haas Broth M350

Bushnell Haas Broth is recommended for the examination of fuels for microbial contamination and for studying microbial hydrocarbon deterioration.

Composition**

Ingredients	Gms / Litre
Magnesium sulphate	0.200
Calcium chloride	0.020
Monopotassium phosphate	1.000
Dipotassium phosphate	1.000
Ammonium nitrate	1.000
Ferric chloride	0.050
Final pH (at 25°C)	7.0±0.2

^{**}Formula adjusted, standardized to suit performance parameters

pH buffer

A slightly more complicated system:

 $5x10^{-4}$ M NaAc and $5x10^{-4}$ M HAc is added in pure water to make a buffer solution with $C_T = 10^{-3}$ M.

What is the pH of the buffer?