Stoichiometry of Biochemical Reactions II

Today's class

- How to write half reactions
- Half reactions - exercises!
- Selecting chemical species of reactants \& products in half reactions

Half reactions

- For complex biochemical redox reactions, it is easier to use half reaction approach
- The oxidation reaction for an electron donor and the reduction reaction for an electron acceptor can be splitted
- Usually written as a reduction reaction

Inorganic half-reactions and their Gibb's free energy at $\mathrm{pH}=7.0$

Textbook Table 2.1

Reaction Number	Reduced-oxidized Compounds	Half-reaction		$\begin{gathered} \Delta \mathrm{G}^{0^{\prime}} \\ \left(\mathrm{kJ} / \mathrm{e}^{-\mathrm{eq}}\right) \end{gathered}$
I-1	Ammonium-nitrate	$\frac{1}{8} \mathrm{NO}_{3}{ }^{-}+\frac{5}{4} \mathrm{H}^{+}+e^{-}$	$=\frac{1}{8} \mathrm{NH}_{4}{ }^{+}+\frac{3}{8} \mathrm{H}_{2} \mathrm{O}$	-35.11
I-2	Ammonium-nitrite	$\frac{1}{6} \mathrm{NO}_{2}{ }^{-}+\frac{4}{3} \mathrm{H}^{+}+e^{-}$	$=\frac{1}{6} \mathrm{NH}_{4}{ }^{+}+\frac{1}{3} \mathrm{H}_{2} \mathrm{O}$	-32.93
I-3	Ammonium-Nitrogen	$\frac{1}{6} N_{2}+\frac{4}{3} H^{+}+e^{-}$	$=\frac{1}{3} \mathrm{NH}_{4}{ }^{+}$	26.70
I-4	Ferrous-Ferric	$F e^{3+}+e^{-}$	$=F e^{2+}$	-74.27
I-5	Hydrogen- H^{+}	$H^{+}+e^{-}$	$=\frac{1}{2} \mathrm{H}_{2}$	39.87
I-6	Nitrite-Nitrate	$\frac{1}{2} \mathrm{NO}_{3}{ }^{-}+\mathrm{H}^{+}+e^{-}$	$=\frac{1}{2} \mathrm{NO}_{2}{ }^{-}+\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$	-41.65
I-7	Nitrogen-Nitrate	$\frac{1}{5} \mathrm{NO}_{3}{ }^{-}+\frac{6}{5} \mathrm{H}^{+}+e^{-}$	$=\frac{1}{10} \mathrm{~N}_{2}+\frac{3}{5} \mathrm{H}_{2} \mathrm{O}$	-72.20
1-8	Nitrogen-Nitrite	$\frac{1}{3} \mathrm{NO}_{2}{ }^{-}+\frac{4}{3} \mathrm{H}^{+}+e^{-}$	$=\frac{1}{6} \mathrm{~N}_{2}+\frac{2}{3} \mathrm{H}_{2} \mathrm{O}$	-92.56
I-9	Sulfide-Sulfate	$\frac{1}{8} \mathrm{SO}_{4}{ }^{2-}+\frac{19}{16} \mathrm{H}^{+}+e^{-}$	$=\frac{1}{16} \mathrm{H}_{2} \mathrm{~S}+\frac{1}{16} \mathrm{HS}^{-}+\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$	20.85
I-10	Sulfide-Sulfite	$\frac{1}{6} \mathrm{SO}_{3}{ }^{2-}+\frac{5}{4} \mathrm{H}^{+}+e^{-}$	$=\frac{1}{12} \mathrm{H}_{2} \mathrm{~S}+\frac{1}{12} \mathrm{HS}^{-}+\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$	11.03
I-11	Sulfite-Sulfate	$\frac{1}{2} \mathrm{SO}_{4}{ }^{2-}+\mathrm{H}^{+}+e^{-}$	$=\frac{1}{2} \mathrm{SO}_{3}{ }^{2-}+\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$	50.30
I-12	Sulfur-Sulfate	$\frac{1}{6} \mathrm{SO}_{4}{ }^{2-}+\frac{4}{3} \mathrm{H}^{+}+e^{-}$	$=\frac{1}{6} \mathrm{~S}+\frac{3}{2} \mathrm{H}_{2} \mathrm{O}$	19.15
I-13	Thiosulfate-Sulfate	$\frac{1}{4} \mathrm{SO}_{4}{ }^{2-}+\frac{5}{4} \mathrm{H}^{+}+e^{-}$	$=\frac{1}{8} \mathrm{~S}_{2} \mathrm{O}_{3}{ }^{2-}+\frac{5}{8} \mathrm{H}_{2} \mathrm{O}$	23.58
I-14	Water-Oxygen	$\frac{1}{4} \mathrm{O}_{2}+\mathrm{H}^{+}+e^{-}$	$=\frac{1}{2} \mathrm{H}_{2} \mathrm{O}$	-78.72

Organic half-reactions and their Gibb's free energy at $\mathrm{pH}=7.0$ (1)

Organic half-reactions and their Gibb's free energy at $\mathrm{pH}=7.0$ (2)

			Textbook Table 2.2
Reaction Number	Reduced Compounds		Half-reaction

[^0]
Writing half reactions

Step 1 Write oxidized form on the left and reduced form on the right
Step 2 Add other species involved in the reaction
Step 3 Balance the reaction for all elements except for oxygen and hydrogen
Step 4 Balance oxygen using water
Step 5 Balance hydrogen using H^{+}
Step 6 Balance charge using e^{-}
Step 7 Convert the equation to the e^{-}-equivalent form

Exercise 1: Glucose oxidation

Step 1)
Step 2)
Step 3)
Step 4)
\rightarrow
Step 5)
Step 6)
\rightarrow
\rightarrow
\rightarrow
Step 7) \rightarrow

Exercise 2: Nitrate reduction

Step 1)

$$
\rightarrow
$$

Step 2)
Step 3)
Step 4)

$$
\rightarrow
$$

$$
\rightarrow
$$

$$
\rightarrow
$$

Step 5)
Step 6)
Step 7) \rightarrow

Half reaction for alanine $\left(\mathrm{CH}_{3} \mathrm{CHNH}_{2} \mathrm{COOH}\right)$

$$
\frac{1}{4} \mathrm{CO}_{2}+\frac{1}{12} \mathrm{NH}_{3}+\mathrm{H}^{+}+e^{-} \rightarrow \frac{1}{12} \mathrm{CH}_{3} \mathrm{CHNH}_{2} \mathrm{COOH}+\frac{1}{3} \mathrm{H}_{2} \mathrm{O}
$$

Now, check O-2:

$$
\frac{1}{6} \mathrm{CO}_{2}+\frac{1}{12} \mathrm{HCO}_{3}^{-}+\frac{1}{12} \mathrm{NH}_{4}^{+}+\frac{11}{12} \mathrm{H}^{+}+e^{-} \rightarrow \frac{1}{12} \mathrm{CH}_{3} \mathrm{CHNH}_{2} \mathrm{COO}^{-}+\frac{5}{12} \mathrm{H}_{2} \mathrm{O} \quad ? ?
$$

Half reactions - various expressions

Half reaction for alanine can be written as

$$
\begin{aligned}
& \frac{1}{6} \mathrm{CO}_{2}+\frac{1}{12} \mathrm{HCO}_{3}^{-}+\frac{1}{12} \mathrm{NH}_{4}^{+}+\frac{11}{12} \mathrm{H}^{+}+e^{-} \rightarrow \frac{1}{12} \mathrm{CH}_{3} \mathrm{CHNH}_{2} \mathrm{COO}^{-}+\frac{5}{12} \mathrm{H}_{2} \mathrm{O} \\
& \frac{1}{4} \mathrm{CO}_{2}+\frac{1}{12} \mathrm{NH}_{3}+\mathrm{H}^{+}+e^{-} \rightarrow \frac{1}{12} \mathrm{CH}_{3} \mathrm{CHNH}_{2} \mathrm{COOH}+\frac{1}{3} \mathrm{H}_{2} \mathrm{O} \\
& \frac{1}{6} \mathrm{CO}_{2}+\frac{1}{12} \mathrm{HCO}_{3}^{-}+\frac{1}{12} \mathrm{NH}_{4}^{+}+\mathrm{H}^{+}+e^{-} \rightarrow \frac{1}{12} \mathrm{CH}_{3} \mathrm{CHNH}_{2} \mathrm{COOH}+\frac{5}{12} \mathrm{H}_{2} \mathrm{O} \\
& \frac{1}{4} \mathrm{HCO}_{3}^{-}+\frac{1}{12} \mathrm{NH}_{4}^{+}+\frac{13}{12} \mathrm{H}^{+}+e^{-} \rightarrow \frac{1}{12} \mathrm{CH}_{3} \mathrm{CHNH}_{2} \mathrm{COO}^{-}+\frac{7}{12} \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Half reactions - various expressions

Factors of potential consideration:

- Most relevant forms of reactants and products

$$
\begin{array}{ll}
\mathrm{CO}_{2}+\mathrm{H}_{2} \mathrm{O} \leftrightarrow \mathrm{H}_{2} \mathrm{CO}_{3} \leftrightarrow \mathrm{H}^{+}+\mathrm{HCO}_{3}^{-} & p K_{a 1}=6.3 \\
\mathrm{NH}_{4}^{+} \leftrightarrow \mathrm{NH}_{3}+\mathrm{H}^{+} & p K_{a}=9.3 \\
\mathrm{CH}_{3} \mathrm{CHNH}_{2} \mathrm{COOH} \leftrightarrow \mathrm{CH}_{3} \mathrm{CHNH}_{2} \mathrm{COO}^{-}+\mathrm{H}^{+} & p K_{a}=2.3
\end{array}
$$

- Simplest form
- Species of interest

[^0]: * Equations 0-18 to 0-20 do not have $\Delta \mathrm{G}^{0}$ values because the reduced species is not chemically defined.

