Bacterial energetics

Today's lecture

- Bacterial energetics overview
- Gibbs free energy of reaction
- Correlation of reaction energetics and yield coefficient

Bacterial energetics

 Microorganisms carry out redox reactions to obtain energy for growth and cell maintenance

Energetics and bacterial growth

- The bacterial cells grow more rapidly when:
 - More energy can be obtained by oxidation of (an e⁻ equivalent of) an e⁻ donor
 - More energy can be obtained by reduction of (an e⁻ equivalent of) an e⁻ acceptor
 - When conditions are favorable
 - abundance of e⁻ donor, e⁻ acceptor, nutrients, etc.
 - low concentration of inhibiting compounds
 - → rapid utilization of substrates

Energetics and bacterial growth

• Consider:

$$Y_n = Y - b \frac{X_a}{-dS/dt}$$

- Larger Y_n when Y >> b: favorable e⁻ donor and acceptor
- Larger Y_n when X_a << -dS/dt: favorable conditions for substrate utilization

Gibbs free energy: standard conditions

- "Standard" free energy
 - $-\Delta G^0$, free energy at 25°C, 1 atm, and unit activity for any chemicals involved
 - $-\Delta G^{0\prime}$, standard free energy adjusted to pH=7

ex)
$$\frac{1}{4}O_2 + H^+ + e^- = \frac{1}{2}H_2O$$

 ΔG^0 is for $\{O_2\} = P_{O_2} = 1$ atm
 $\{H^+\} = 1 \text{ (pH = 0)}$
 $\{H_2O\} = 1$
 ΔG^0 is for $\{O_2\} = P_{O_2} = 1$ atm
 $\{H^+\} = 10^{-7}$
 $\{H_2O\} = 1$

 $\{H_2O\} = 1$ applies to any dilute aqueous solutions

Free energy of formation, ΔG_f

 Gibbs free energy that accompanies the formation of 1 mole of the substance from its component elements

Gibbs free energy change of reaction

• Free energy change of reaction, ΔG_r

$$\sum [(sum \ of \ product \ \Delta G_f) - (sum \ of \ reactant \ \Delta G_f)]$$

For a generic reaction written as

$$0 = \sum_{i=1}^{n} v_{ir} A_i$$

 $0 = \sum_{i=1}^{n} v_{ir} A_i$ $v_{ir} = \text{stoichiometric coefficient, (-) for reactants, (+) for}$

 A_i = reaction constituent, reactants or products

The ΔG_r can be written as

$$\Delta G_r = \sum_{i=1}^n v_{ir} \Delta G_f$$

Q1: Calculate the standard free energy adjusted pH 7 for the half reaction of 2-chlorobenzoate formation as given below.

$$\frac{1}{28}HCO_3^-(aq) + \frac{3}{14}CO_2(g) + \frac{1}{28}Cl^-(aq) + \frac{29}{28}H^+(aq) + e^- \rightarrow$$

$$\frac{1}{28}C_6H_4ClCOO^-(aq) + \frac{13}{28}H_2O(l)$$

Use the following values of free energy of formation (in textbook Appendix A):

Species	HCO ₃ -(aq)	CO ₂ (g)	Cl ⁻ (aq)	H ⁺ (aq, 10 ⁻⁷)	C ₆ H ₄ CICOO ⁻ (aq)	H ₂ O(I)
ΔG _f @ 25°C (kJ/mole)	-586.85	-394.36	-31.35	-39.87	-237.9	-237.18

Q2: Calculate the standard free energy adjusted pH 7 for overall energy reaction with ethanol as an e⁻ donor and oxygen as an e⁻ acceptor. Use the half reactions listed in Table 2.2 and 2.3.

For nonstandard conditions,

$$\Delta G_r = \Delta G_r^{\ 0} + RT \sum_{i=1}^n v_{ir} ln a_i$$

$$a_i = activity \ of \ constituent \ A_i$$

$$R = gas \ constant, \ 8.314 \times 10^{-3} \ kJ/mole - K$$

Caution:

- v_{ir} is negative for reactants and positive for products

T = absolute temperature, K

- ΔG_r^0 is for standard conditions -- pH=0 From ΔG_r^0 ', we can calculate ΔG_r^0 by: $\Delta G_r^0 = \Delta G_r^0$ ' - RT v_H + $ln[10^{-7}]$

Q3: Calculate the free energy of reaction for aerobic ethanol degradation at the following conditions: $T = 20^{\circ}C$, pH = 5.0, $[C_2H_5OH] = 2 \times 10^{-3} M$, $P_{CO2} = 3 \times 10^{-4} atm$, $P_{O2} = 0.21 atm$.

- The energy generated by energy reactions is spent to make ATP
- ATP is consumed to drive cell synthesis or cell maintenance
- True yield (Y) or f_s⁰ does not involve costs for cell maintenance
- Cell synthesis involves energy loss (bacteria are not 100% efficient engines!) to synthesize C source to an intermediate compound, and then the intermediate compound to cells

• Energy required to convert carbon source to pyruvate, ΔG_p (heterotrophic bacteria, ammonia as N source):

$$\Delta G_p = 35.09 - \Delta G_c^{0}$$
 35.09 = reaction free energy for formation of pyruvate from CO_2 $\Delta G_c^{0} = reaction$ free energy for formation of carbon source from CO_2

• Energy required to convert pyruvate to cells, ΔG_{pc} = 18.8 kJ/e⁻ eq

(estimated value for a cell formula of $C_5H_7O_2N$ using NH_4^+ as a N source)

• Energy required for cell synthesis from the carbon source, ΔG_s :

$$\Delta G_S = \frac{\Delta G_p}{\varepsilon^n} + \frac{\Delta G_{pc}}{\varepsilon}$$

$$\varepsilon = \text{energy transfer efficiency}$$

$$n = -1 \text{ for } \Delta G_p < 0 \text{ (C-source is at higher energy state than pyruvate);}$$

$$+1 \text{ for } \Delta G_p > 0 \text{ (C-source is at lower}$$

• If energy for cell maintenance is neglected (situation for true yield, Y, and f_s^0):

$$A\varepsilon\Delta G_r + \Delta G_s = 0$$

 $A = e^{-}$ equivalent of e^{-} donor used for energy production per equivalent of cells formed

energy state than pyruvate)

• Solving for A: $A = -\frac{\Delta G_p/\varepsilon^n + \Delta G_{pc}/\varepsilon}{\varepsilon \Delta G_r}$

• From A, we can calculate $f_s^{\ 0}$ and $f_e^{\ 0}$ as:

$$f_s^0 = \frac{1}{1+A}$$
 $f_e^0 = 1 - f_s^0 = \frac{A}{1+A}$

- Energy transfer efficiency, ε
 - 55-70% under optimal conditions
 - Use 0.6 for ordinary cases

Q4: Estimate f_s^0 and Y for aerobic oxidation of acetate assuming ε =0.4 and 0.6 at standard conditions except for a pH of 7.0. Ammonia is available for cell synthesis.