Bacterial energetics

- Bacterial energetics overview
- Gibbs free energy of reaction
- Correlation of reaction energetics and yield coefficient

Bacterial energetics

 Microorganisms carry out redox reactions to obtain energy for growth and cell maintenance

Energetics and growth: thoughts

- Bacterial cells grow more rapidly when:
 - More energy is obtained by oxidation of (an e⁻ equivalent of) an e⁻ donor
 - More energy is obtained by reduction of (an e⁻ equivalent of) an e⁻ acceptor
 - Conditions are favorable...
 - for rapid utilization of substrates
 - abundance of e⁻ donor, e⁻ acceptor, nutrients, etc.
 - low concentration of inhibiting compounds

Energetics and growth: math

$$Y_n = Y - b \frac{X_a}{-dS/dt}$$

- Larger Y_n when Y >> b: favorable e⁻ donor and acceptor
- Larger Y_n when X_a << -dS/dt: favorable conditions for substrate utilization

Gibbs free energy: standard conditions

- "Standard" free energy
 - $-\Delta G^0$, free energy at 25°C, 1 atm, and unit activity for any chemicals involved
 - $-\Delta G^{0'}$, standard free energy adjusted to pH=7

ex)
$$\frac{1}{4}O_2 + H^+ + e^- = \frac{1}{2}H_2O$$

 $\Delta G^0 \text{ is for } \{O_2\} = P_{O_2} = 1 atm$
 $\{H^+\} = 1 \text{ (pH = 0)}$
 $\{H_2O\} = 1$
 $\Delta G^{0'} \text{ is for } \{O_2\} = P_{O_2} = 1 atm$
 $pH=7 \ (\{H^+\} = 10^{-7})$
 $\{H_2O\} = 1$
 $\{H_2O\} = 1$

6

Free energy of formation, ΔG_f

 Gibbs free energy that accompanies the formation of 1 mole of the substance from its component elements

Gibbs free energy change of reaction

• Free energy change of reaction, ΔG_r $\sum [(sum \ of \ product \ \Delta G_f) - (sum \ of \ reactant \ \Delta G_f)]$

For a generic reaction written as

$$0 = \sum_{i=1}^{n} v_{ir} A_i$$

 v_{ir} = stoichiometric coefficient, (-) for reactants, (+) for products

A_i = reaction constituent, reactants or products

The ΔG_r can be written as

$$\Delta G_r = \sum_{i=1}^n v_{ir} \Delta G_f$$

Reaction free energy

Q1: Calculate the standard free energy adjusted pH 7 for the half reaction of 2-chlorobenzoate formation as given below.

$$\begin{aligned} \frac{1}{28}HCO_3^-(aq) + \frac{3}{14}CO_2(g) + \frac{1}{28}Cl^-(aq) + \frac{29}{28}H^+(aq) + e^- \rightarrow \\ \frac{1}{28}C_6H_4ClCOO^-(aq) + \frac{13}{28}H_2O(l) \end{aligned}$$

Use the following values of free energy of formation (in textbook Appendix A):

Species	HCO ₃ ⁻(aq)	CO ₂ (g)	Cl⁻(aq)	H⁺(aq, 10 ⁻⁷)	C ₆ H ₄ ClCOO⁻(aq)	H ₂ O(I)
ΔG _f @ 25°C (kJ/mole)	-586.85	-394.36	-31.35	-39.87	-237.9	-237.18

Q2: Calculate the standard free energy adjusted pH 7 for overall energy reaction with ethanol as an e⁻ donor and oxygen as an e⁻ acceptor. Use the half reactions listed in Table 2.2 and 2.3.

Reaction free energy

• For nonstandard conditions,

$$\Delta G_r = \Delta G_r^{\ 0} + RT \sum_{i=1}^n v_{ir} lna_i$$

 a_i = activity of constituent A_i R = gas constant, $8.314 \times 10^{-3} kJ/mole - K$ T = absolute temperature, K

Caution:

- v_{ir} is negative for reactants and positive for products
- ΔG_r^{0} is for standard conditions -- pH=0 From $\Delta G_r^{0'}$, we can calculate ΔG_r^{0} by: $\Delta G_r^{0} = \Delta G_r^{0'} - \operatorname{RT} v_{H^+} ln[10^{-7}]$

Reaction free energy

Q3: Calculate the free energy of reaction for aerobic ethanol degradation at the following conditions: $T = 20^{\circ}C$, pH = 5.0, $[C_2H_5OH] = 2 \times 10^{-3} M$, $P_{CO2} = 3 \times 10^{-4} atm$, $P_{O2} = 0.21 atm$.

- To determine f_s^0 or Y we consider the energy balance for cell synthesis
 - energy is needed (ATP \rightarrow ADP) to synthesize cells
 - the energy reaction supplies the required energy (ADP \rightarrow ATP)
 - cell maintenance is accounted for by decay rate (b)

Two steps of cell synthesis, the efficiency

- 1) Carbon source is metabolized to form a building block and
- 2) The building block is synthesized to a cell

** Bacteria are not 100% efficient engines -- each step involves energy loss!

• Energy required to convert carbon source to pyruvate, ΔG_p (heterotrophic bacteria, ammonia as N source):

$$\Delta G_p = 35.09 - \Delta G_c^{0'}$$
(in kJ/e⁻ eq)

35.09 = reaction free energy for formation of pyruvate from CO_2 $\Delta G_c^{0'}$ = reaction free energy for formation of carbon source from CO_2

• Energy required to convert pyruvate to cells, $\Delta G_{pc} = 18.8 \text{ kJ/e}^{-}$ eq

(estimated value for a cell formula of $C_5H_7O_2N$ using NH_4^+ as a N source)

• Energy required for cell synthesis from the carbon source, ΔG_s :

$$\Delta G_s = \frac{\Delta G_p}{\varepsilon^n} + \frac{\Delta G_{pc}}{\varepsilon}$$

 ε = energy transfer efficiency n = -1 for $\Delta G_p < 0$ (C-source is at higher energy state than pyruvate); +1 for $\Delta G_p > 0$ (C-source is at lower energy state than pyruvate)

• At steady state, energy balance is maintained:

 $A\varepsilon\Delta G_r + \Delta G_s = 0$

 ΔG_r = reaction free energy for energy reaction = $\Delta G_a - \Delta G_d$ $A = e^-$ equivalent of e^- donor used for energy production per equivalent of cells formed

- Solving for A: $A = -\frac{\Delta G_p / \varepsilon^n + \Delta G_{pc} / \varepsilon}{\varepsilon \Delta G_r}$
- From A, we can calculate f_s^0 and f_e^0 as:

$$f_s^{0} = \frac{1}{1+A}$$
 $f_e^{0} = 1 - f_s^{0} = \frac{A}{1+A}$

- Energy transfer efficiency, ε
 - 55-70% under optimal conditions
 - Use 0.6 for ordinary cases

Q4: Estimate f_s^0 and Y for aerobic oxidation of acetate assuming ϵ =0.4 and 0.6 at standard conditions except for a pH of 7.0. Ammonia is available for cell synthesis.