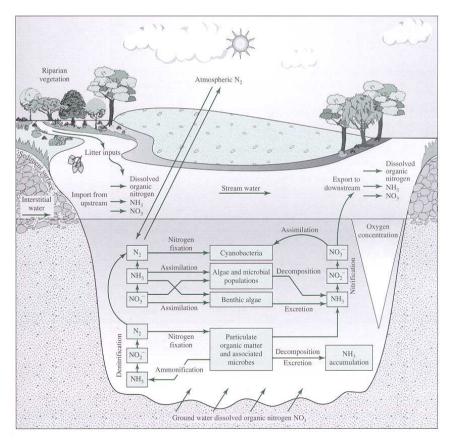

Nutrient cycle: C cycle


• Essential element: building block of life & life-sustaining chemicals

- Relevant processes
- carbon cycling in the biosphere: photosynthesis, respiration, predation
- <u>ocean as a major carbon</u>
 <u>sink</u>: solubility pump and
 biological pump
- fossil fuel combustion:
 significant input of CO₂
 by humans
- dissolution of carbonate rocks

Nutrient cycle: N cycle

- Critical element for all life (protein)
- N₂ in the air: abundant, but not easily available to organisms

- Relevant processes
- nitrification

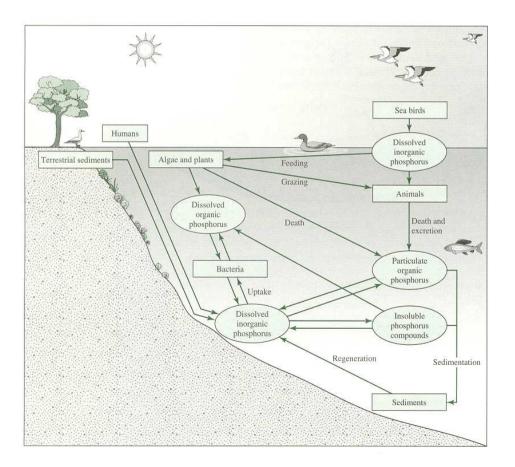
 $NH_4^+ + 2O_2 = NO_3^- + 2H^+ + H_2O_3^-$

- denitrification

 $2NO_3^-$ + organic C = N₂ + CO₂ + H₂O

- nitrogen fixation

 $N_2 + 8e^- + 8H^+ + ATP \rightarrow$

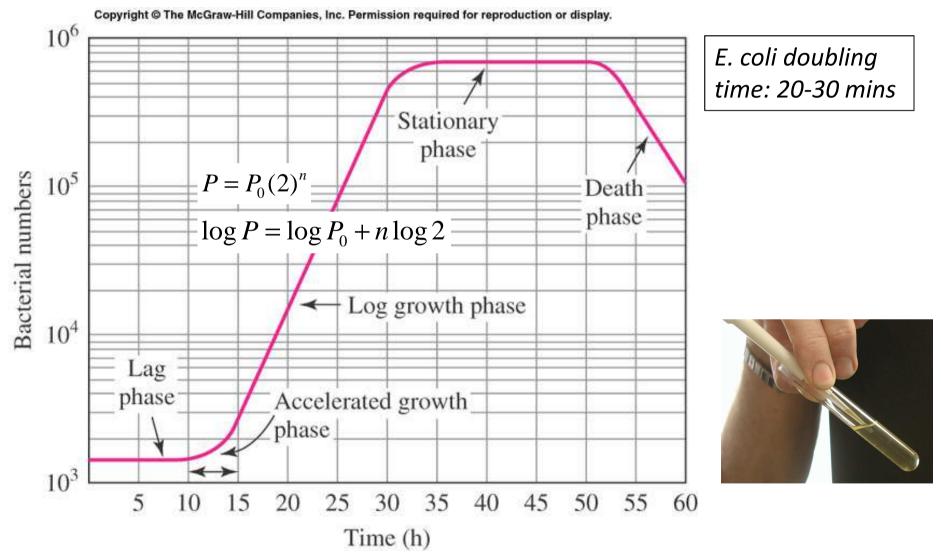

 $2NH_3 + H_2 + ADP + inorganic P$

 significant human contribution: Haber-Bosch process

 $N_2 + 3H_2 \rightarrow 2NH_3$

Nutrient cycle: P cycle

- Another essential nutrient (DNA, RNA, ATP)
- Very slow cycling: moves slowly through the soil and ocean



- Relevant processes
- natural source: input from mineral weathering
- human contribution can be significant (fertilizer, detergent, etc.)
- uptake by plants and algae in a soluble inorganic form (HPO₄²⁻, PO₄³⁻, etc.)
- loss by sediment burial

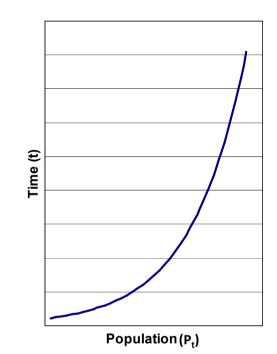
Population dynamics

- The study of changes in the numbers and composition of individuals in a population
- Significance for environmental science and engineering
 - Understanding how environmental perturbations affect populations
 - Predicting human populations to determine water resource and waste(water) treatment needs
 - Predicting bacterial populations in engineered systems
 - Using populations as indicators of environmental quality

Bacterial population growth (pure culture)

Exponential model

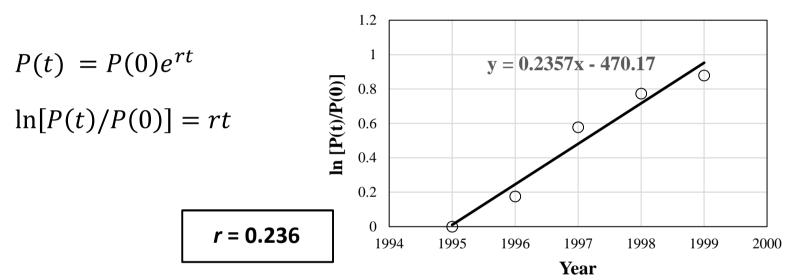
- Assumes infinite resources
- Continuous function


$$\frac{dP}{dt} = rP \quad \longrightarrow \quad P(t) = P(0)e^{rt}$$

P: population r = specific rate of change

- Geometric model
 - Assumes infinite resources
 - Discrete function

$$\frac{P(t+1)}{P(t)} = \lambda$$


P(t): population after t years P(t+1): population after t+1 years λ = yearly growth rate

Q: Using the following data for the eastern gray wolf population in Wisconsin, USA, compare the population in 2003 predicted by the exponential model and the geometric model.

Year	1995	1996	1997	1998	1999
Population	85	99	148	180	200

1) Exponential model

Population in 2003? (t = 8 yrs)

$$P(8) = P(0)e^{r \times 8} = 85e^{0.236 \times 8} = 562$$

2) Geometric model

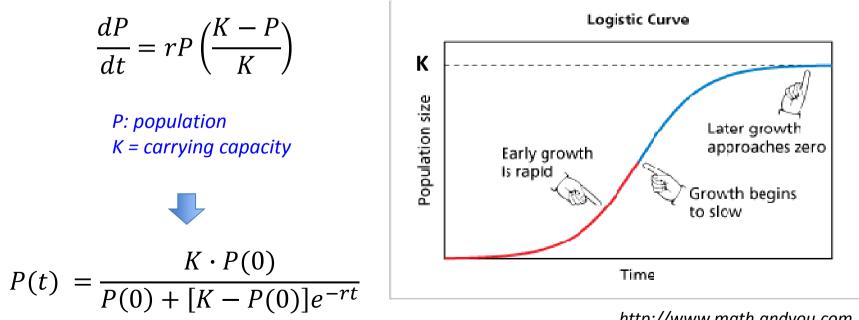
$$\frac{P(t+1)}{P(t)} = \lambda$$

Year	Population	λ	
1995	83		
1996	99	1.193	
1997	148	1.495	
1998	180	1.216	
1999	200	1.111	
Average		1.254	

Population in 2003?

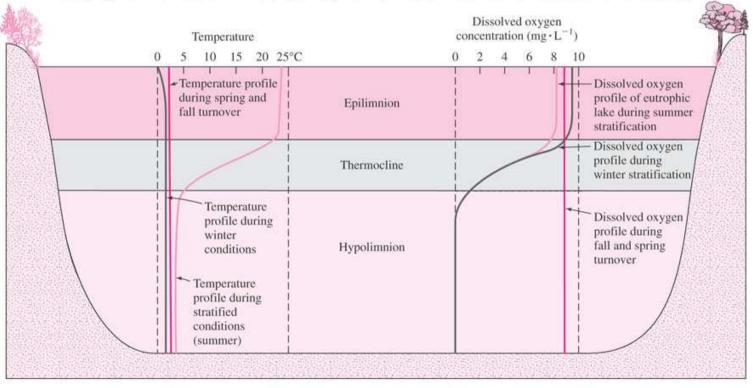
(t=8 yrs):

use data for y1999 (t=4 yrs)


$$P(8) = P(4) \times \lambda^4$$

 $P(8) = 200 \times 1.254^4 = 495$

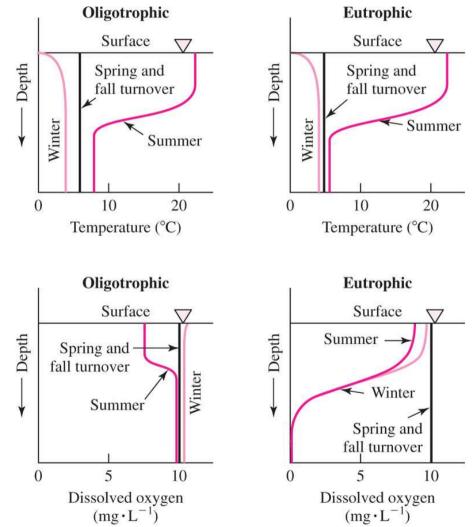
cf) 562 *by exponential model*


Logistic model ullet

- Assumes resources are limited
- There is a maximum number of population that an area can support

Lakes

Seasonal changes


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

(a) Temperature profile

(b) Dissolved oxygen profile

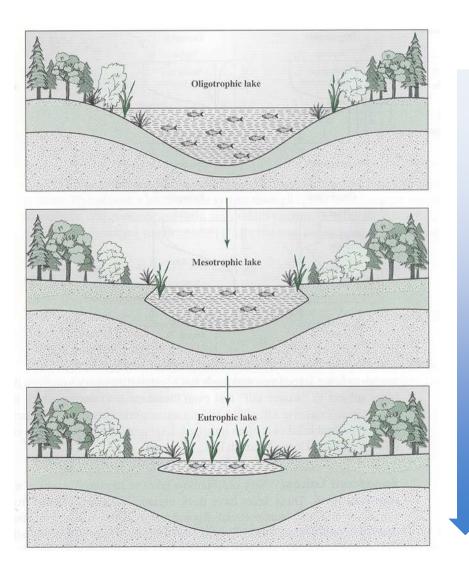
Lake productivity

- Oligotrophic lakes: low productivity due to limited supply of nutrients, clear water
- Eutrophic lakes: high productivity due to abundance supply of nutrients, turbid water

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display

Lake productivity

- Lake productivity: a measure of a lake's ability to support aquatic life (a more productive lake has a higher biomass concentration)
- Controlled by the limiting factor ("Liebig's law of the minimum"*)


* *Liebig's law of the minimum*: growth is controlled not by the total amount of the resources available, but by the scarcest resource (limiting factor).

```
Recall: C, H, O, N, S, P, K, Ca, Mg, Fe
```

Eutrophication of lakes

- Natural eutrophication: A natural aging process of a lake; may take over thousands of years (an unpolluted lake)
- **Cultural eutrophication**: accelerated eutrophication through the introduction of high levels of nutrients (a polluted lake)

Natural eutrophication

lake productivity increases over time

Cultural eutrophication

- Caused by the introduction of high levels of N and P (usually P for lakes and N for coastal waters)
- Sources of nutrients
 - human waste (sewage)
 - animal waste
 - agricultural sites

Cultural eutrophication

- Effect of eutrophication: algal bloom
 - high algae biomass: taste and odor problems, aesthetic problem
 - deposition of dead algae: oxygen depletion in the bottom
 - harmful algal bloom: some algal species produce toxic materials (ex: microcystin by cyanobacteria)
 - fish kills by O₂ depletion and toxic compounds, and clogging by algae

Reading assignment

• Textbook Ch5 199-225