Bacterial energetics

- Bacterial energetics overview
- Gibbs free energy of reaction
- Correlating reaction energetics and yield coefficient

Bacterial energetics

• Microorganisms carry out redox reactions to obtain energy for growth and cell maintenance

				Textbook Table 2.2
Reaction Number	Reduced Compounds	Half-reaction		
0-1	Acetate	$\frac{1}{8}CO_2 + \frac{1}{8}HCO_3^- + H^+ + e^-$	$= \frac{1}{8}CH_{3}COO^{-} + \frac{3}{8}H_{2}O$	27.40
0-2	Alanine	$\tfrac{1}{6}CO_2 + \tfrac{1}{12}HCO_3^- + \tfrac{1}{12}NH_4^+ + \tfrac{11}{12}H^+ + e^-$	$= \frac{1}{12}CH_3CHNH_2COO^- + \frac{5}{12}H_2O$	31.37
0-3	Benzoate	$\frac{1}{5}CO_2 + \frac{1}{30}HCO_3^- + H^+ + e^-$	$= \frac{1}{30}C_6H_5COO^- + \frac{13}{30}H_2O$	27.34
0-4	Citrate	$\frac{1}{6}CO_2 + \frac{1}{6}HCO_3^- + H^+ + e^-$	$= \frac{1}{18}(C00^{-})CH_2C0H(C00^{-})CH_2C00^{-} + \frac{4}{9}H_2C00^{-} + \frac{4}{9}H_2C00^{-} + \frac{4}{9}H_2C00^{-} + \frac{4}{9}H_2C00^{-} + \frac{4}{9}H_2C0H(C00^{-})CH_2C00^{-} + \frac{4}{9}H_2C0H(C00^{-})C$	2 <i>0</i> 33.08
0-5	Ethanol	$\frac{1}{6}CO_2 + H^+ + e^-$	$= \frac{1}{12}CH_{3}CH_{2}OH + \frac{1}{4}H_{2}O$	31.18
0-6	Formate	$\frac{1}{2}HCO_{3}^{-} + H^{+} + e^{-}$	$= \frac{1}{2}HCOO^{-} + \frac{1}{2}H_2O$	39.19
0-7	Glucose	$\frac{1}{4}CO_2 + H^+ + e^-$	$= \frac{1}{24}C_6H_{12}O_6 + \frac{1}{4}H_2O$	41.35
0-8	Glutamate	$\frac{1}{6}CO_2 + \frac{1}{9}HCO_3^- + \frac{1}{18}NH_4^+ + H^+ + e^-$	$= \frac{1}{18}COOHCH_2CH_2CHNH_2COO^- + \frac{4}{9}H_2O$	30.93
0-9	Glycerol	$\frac{3}{14}CO_2 + H^+ + e^-$	$= \frac{1}{14}CH_2OHCHOHCH_2OH + \frac{2}{14}H_2O$	38.88
0-10	Glycine	$\frac{1}{6}CO_2 + \frac{1}{6}HCO_3^- + \frac{1}{6}NH_4^+ + H^+ + e^-$	$= \frac{1}{6}CH_2NH_2COOH + \frac{1}{2}H_2O$	39.80

Organic half-reactions and their Gibb's free energy at pH = 7.0 (1)

• low concentration of inhibiting compounds

Inorganic half-	-reactions and	their Gibb's	free energy a	t pH = 7.0
-----------------	----------------	--------------	---------------	-------------

Textbook Table 2.1

Reaction Number	Reduced-oxidized Compounds	Half	∆G ⁰ ′ (kJ/e⁻eq)	
I-1	Ammonium-nitrate	$\frac{1}{8}NO_3^- + \frac{5}{4}H^+ + e^-$	$= \frac{1}{8}NH_4^+ + \frac{3}{8}H_2O$	-35.11
1-2	Ammonium-nitrite	$\frac{1}{6}NO_2^- + \frac{4}{3}H^+ + e^-$	$= \frac{1}{6}NH_4^+ + \frac{1}{3}H_2O$	-32.93
I-3	Ammonium-Nitrogen	$\frac{1}{6}N_2 + \frac{4}{3}H^+ + e^-$	$= \frac{1}{3}NH_4^+$	26.70
I-4	Ferrous-Ferric	$Fe^{3+} + e^{-}$	$= Fe^{2+}$	-74.27
I-5	Hydrogen-H*	$H^{+} + e^{-}$	$=\frac{1}{2}H_2$	39.87
I-6	Nitrite-Nitrate	$\frac{1}{2}NO_3^- + H^+ + e^-$	$= \frac{1}{2}NO_2^- + \frac{1}{2}H_2O$	-41.65
I-7	Nitrogen-Nitrate	$\frac{1}{5}NO_3^- + \frac{6}{5}H^+ + e^-$	$= \frac{1}{10}N_2 + \frac{3}{5}H_2O$	-72.20
I-8	Nitrogen-Nitrite	$\frac{1}{3}NO_2^- + \frac{4}{3}H^+ + e^-$	$= \frac{1}{6}N_2 + \frac{2}{3}H_2O$	-92.56
I-9	Sulfide-Sulfate	$\frac{1}{8}SO_4^{\ 2-} + \frac{19}{16}H^+ + e^-$	$= \frac{1}{16}H_2S + \frac{1}{16}HS^- + \frac{1}{2}H_2O$	20.85
I-10	Sulfide-Sulfite	$\frac{1}{6}SO_3{}^{2-} + \frac{5}{4}H^+ + e^-$	$= \frac{1}{12}H_2S + \frac{1}{12}HS^- + \frac{1}{2}H_2O$	11.03
I-11	Sulfite-Sulfate	$\frac{1}{2}SO_4^{2-} + H^+ + e^-$	$= \frac{1}{2}SO_3^{2-} + \frac{1}{2}H_2O$	50.30
I-12	Sulfur-Sulfate	$\frac{1}{6}SO_4^{2-} + \frac{4}{3}H^+ + e^-$	$= \frac{1}{6}S + \frac{3}{2}H_2O$	19.15
I-13	Thiosulfate-Sulfate	$\frac{1}{4}SO_4^{\ 2-} + \frac{5}{4}H^+ + e^-$	$= \frac{1}{8}S_2O_3^{2-} + \frac{5}{8}H_2O$	23.58
I-14	Water-Oxygen	$\frac{1}{4}O_2 + H^+ + e^-$	$= \frac{1}{2}H_2O$	-78.72

Energetics and growth: thoughts

- Bacterial cells grow more rapidly when:
 - More energy is obtained by oxidation of (an e⁻ equivalent of) an e⁻ donor
 - More energy is obtained by reduction of (an e⁻ equivalent of) an e⁻ acceptor
 - Conditions are favorable for rapid utilization of substrates
 - abundance of e⁻ donor, e⁻ acceptor, nutrients, etc.
 - low concentration of inhibiting compounds

Energetics and growth: math

$$Y_n = Y - b \frac{X_a}{-dS/dt}$$

- Y_n ↑ when Y ↑: favorable e⁻ donor and acceptor - Y_n ↑ when $X_a << -dS/dt$: favorable conditions for substrate utilization

* We will discuss about the -dS/dt term in forthcoming lectures!

Gibbs free energy: standard conditions

- "Standard" free energy
 - $-\Delta G^0$, free energy at 25°C, 1 atm, and unit activity for any chemicals involved
 - $-\Delta G^{0'}$, standard free energy adjusted to pH=7

ex)
$$\frac{1}{4}O_2 + H^+ + e^- = \frac{1}{2}H_2O$$

 ΔG^0 is for $\{O_2\} = P_{O_2} = 1 atm$
 $\{H^+\} = 1 \ (\text{pH} = 0)$
 $\{H_2O\} = 1$
 $\Delta G^{0'}$ is for $\{O_2\} = P_{O_2} = 1 atm$
 $\text{pH}=7 \ (\{H^+\} = 10^{-7})$
 $\{H_2O\} = 1$
 $\{H_2O\} = 1$
 $\{H_2O\} = 1$
 $\{H_2O\} = 1$
 $\{H_2O\} = 1 \ (H^+) = 10^{-7}$
 $\{H_2O\} = 1$
 $\{H_2O\} = 1$
 $\{H_2O\} = 1$
 $\{H_2O\} = 1$
 $\{H_2O\} = 1 \ (H^+) = 10^{-7}$
 $\{H_2O\} = 1$
 $\{H_2O\} = 1$

Free energy of formation, ΔG_f

 Gibbs free energy that accompanies the formation of 1 mole of the substance from its component elements

Gibbs free energy change of reaction

• Free energy change of reaction, ΔG_r $\sum (product \Delta G_f) - \sum (reactant \Delta G_f)$

For a generic reaction written as

$$0 = \sum_{i=1}^{n} v_{ir} A_i$$

 v_{ir} = stoichiometric coefficient, (-) for reactants, (+) for products

A_i = reaction constituent, reactants or products

 ΔG_r can be written as

$$\Delta G_r = \sum_{i=1}^n v_{ir} \Delta G_f$$

Reaction free energy

Q1: Calculate the standard free energy adjusted pH 7 for the half reaction of 2-chlorobenzoate formation as given below.

$$\begin{aligned} \frac{1}{28}HCO_3^-(aq) + \frac{3}{14}CO_2(g) + \frac{1}{28}Cl^-(aq) + \frac{29}{28}H^+(aq) + e^- \rightarrow \\ \frac{1}{28}C_6H_4ClCOO^-(aq) + \frac{13}{28}H_2O(l) \end{aligned}$$

Use the following values of free energy of formation (in textbook Appendix A):

Species	HCO ₃ ⁻(aq)	CO ₂ (g)	Cl⁻(aq)	H ⁺ (aq, 10 ⁻⁷)	C ₆ H₄ClCOO⁻(aq)	H ₂ O(I)
ΔG _f ⁰ ′ @ 25°C (kJ/mole)	-586.85	-394.36	-31.35	-39.87	-237.9	-237.18

$$\begin{aligned} \frac{1}{28}HCO_3^{-}(aq) + \frac{3}{14}CO_2(g) + \frac{1}{28}Cl^{-}(aq) + \frac{29}{28}H^+(aq) + e^- \rightarrow \\ \frac{1}{28}C_6H_4ClCOO^-(aq) + \frac{13}{28}H_2O(l) \end{aligned}$$

Species	HCO ₃ ⁻(aq)	CO ₂ (g)	Cl⁻(aq)	H ⁺ (aq, 10 ⁻⁷)	C ₆ H ₄ ClCOO ⁻ (aq)	H ₂ O(I)
ΔG _f ⁰ ′ @ 25°C (kJ/mole)	-586.85	-394.36	-31.35	-39.87	-237.9	-237.18

$$\Delta G_r = \sum_{i=1}^n v_{ir} \Delta G_f$$

 v_{ir} = stoichiometric coefficient, (-) for reactants, (+) for products

$$\Delta G_r^{0'} = \left\{ -\frac{1}{28} \times (-586.85) + \frac{3}{14} \times (-394.36) + \frac{1}{28} \times (-31.35) + \frac{29}{28} \times (-39.87) \right\} \\ + \left\{ \frac{1}{28} \times (-237.9) + \frac{13}{28} \times (-237.18) \right\}$$

 $= 29.26 \ kJ/e^{-} \ eq$

Q2: Calculate the standard free energy adjusted pH 7 for overall energy reaction with ethanol as an e⁻ donor and oxygen as an e⁻ acceptor. Use the half reactions listed in Table 2.2 and 2.3.

$$R_{d}: O-5 \qquad \Delta G_{r}^{0'} = 31.18 \ kJ/e^{-} \ eq$$

$$R_{a}: I-14 \qquad \Delta G_{r}^{0'} = -78.72 \ kJ/e^{-} \ eq$$

$$R_{e} = R_{a} - R_{d} \qquad \Delta G_{r}^{0'}(R_{e}) = \Delta G_{r}^{0'}(R_{a}) - \Delta G_{r}^{0'}(R_{d})$$

$$R_{a}: \quad \frac{1}{4}o_{2} + H^{+} + e^{-} = \frac{1}{2}H_{2}O \qquad = -78.72 - 31.18$$

$$= -109.90 \ kJ/e^{-} \ eq$$

$$R_{e}: \quad \frac{1}{12}c_{2}H_{5}OH + \frac{1}{4}O_{2} = \frac{1}{6}CO_{2} + H^{+} + e^{-}$$

$$R_{e}: \quad \frac{1}{12}c_{2}H_{5}OH + \frac{1}{4}O_{2} = \frac{1}{6}CO_{2} + \frac{1}{4}H_{2}O$$

Reaction free energy: general conditions

• For nonstandard conditions,

$$\Delta G_r = \Delta G_r^{\ 0} + RT \sum_{i=1}^n v_{ir} lna_i$$

 a_i = activity of constituent A_i R = gas constant, $8.314 \times 10^{-3} kJ/mole - K$ T = absolute temperature, K

Caution:

- v_{ir} is negative for reactants and positive for products
- ΔG_r^0 is for standard conditions -- pH=0 From ΔG_r^0 , we can calculate ΔG_r^0 by: $\Delta G_r^0 = \Delta G_r^0 - \text{RT} v_{H^+} ln[10^{-7}]$

Reaction free energy

Q3: Calculate the free energy of reaction for aerobic ethanol degradation at the following conditions: $T = 20^{\circ}C$, pH = 5.0, $[C_2H_5OH] = 2 \times 10^{-3} M$, $P_{CO2} = 3 \times 10^{-4} atm$, $P_{O2} = 0.21 atm$.

From Q2,

$$\Delta G_r^{0'} = -109.90 \ kJ/e^- \ eq$$

$$R_e: \quad \frac{1}{12} C_2 H_5 OH + \frac{1}{4} O_2 = \frac{1}{6} CO_2 + \frac{1}{4} H_2 O$$

$$\Delta G_r^{0} = \Delta G_r^{0'} - RT v_H + ln[10^{-7}] = G_r^{0'} - 0 = G_r^{0'}$$

$$\Delta G_r = \Delta G_r^{0} + RT \sum_{i=1}^{n} v_{ir} lna_i$$

$$= -109.90 \ kJ/e^- \ eq + (8.314 \times 10^{-3} \ kJ/mole - K) \times (293 \ K)$$

$$\times \left\{ -\frac{1}{12} ln(2 \times 10^{-3}) - \frac{1}{4} ln(0.21) + \frac{1}{6} ln(3 \times 10^{-4}) + \frac{1}{4} ln(1) \right\}$$

$$= -110.98 \ kJ/e^- \ eq$$

$$a_{H_2O} = 1 \ for \ aqueous \ solutions; you \ may \ omit \ the \ water \ term$$

Deriving f_s^0 or Y by thermodynamic principles

- To determine f_s^0 or Y we consider the energy balance for cell synthesis
 - energy is needed (ATP \rightarrow ADP) to synthesize cells [1]
 - energy reaction (R_e) supplies the required energy (ADP \rightarrow ATP) [2]
 - At steady state,

```
energy required for [1] = energy supplied by [2]
```

Two steps of <u>cell synthesis</u>, the efficiency

 We conceptualize the cell synthesis mechanism into two steps

- 1) Carbon source is metabolized to form a building block
- 2) The building block is synthesized to a cell
- We should consider that bacteria are not 100% efficient engines -- each step involves energy loss!

ΔG_p (C-source \rightarrow pyruvate), ΔG_{pc} (pyruvate \rightarrow cells)

• Energy required to convert carbon source to pyruvate, ΔG_p (heterotrophic bacteria, ammonia as N source):

$$\Delta G_p = 35.09 - \Delta G_c^{0'}$$
(in kJ/e⁻ eq)

35.09 = reaction free energy for formation of pyruvate from CO_2 $\Delta G_c^{0'}$ = reaction free energy for formation of carbon source from CO_2

• Energy required to convert pyruvate to cells, $\Delta G_{pc} = 18.8 \text{ kJ/e}^{-}$ eq

(estimated value for a cell formula of $C_5H_7O_2N$ using NH_4^+ as a N source)

ΔG_s (C-source \rightarrow cells)

• Energy required for cell synthesis from the carbon source, ΔG_s :

if $\Delta G_p < 0$ (C-source is at higher energy state than pyruvate)

if $\Delta G_p > 0$ (C-source is at lower energy state than pyruvate)

$$\Delta G_s = \frac{\Delta G_p}{\varepsilon} + \frac{\Delta G_{pc}}{\varepsilon}$$

ε = energy transfer efficiency

Energy balance of overall reaction

- The energy obtained by an energy reaction is used to synthesize cells
- Energy obtained = Energy used (at steady state)
- Keep in mind that bacteria cannot use 100% of the energy available by an energy reaction (energy transfer efficiency, ε)
- Therefore we write

$$A\varepsilon\Delta G_r + \Delta G_s = 0$$

 $A = e^-$ equivalent of e^- donor used for energy
production per e^- equivalent of cells formed $\Delta G_r =$ reaction free energy for energy reaction
 $= \Delta G_a - \Delta G_d$ (per e^- -eq) $\Delta G_s =$ energy required for cell synthesis from
the carbon source (per e^- -eq)20

Deriving f_s^0 or Y by thermodynamic principles

• Solving for A:

$$A = -\frac{\Delta G_p / \varepsilon^n + \Delta G_{pc} / \varepsilon}{\varepsilon \Delta G_r} \qquad n = -1 \text{ for } \Delta G_p < 0$$

$$+1 \text{ for } \Delta G_p > 0$$

• From A, we can calculate f_s^0 and f_e^0 as:

$$f_s^{0} = \frac{1}{1+A}$$
 $f_e^{0} = 1 - f_s^{0} = \frac{A}{1+A}$

- Energy transfer efficiency, ε
 - 55-70% under optimal conditions
 - Use 0.6 for ordinary cases

Deriving f_s^0 or Y by thermodynamic principles

Q4: Estimate f_s^0 and Y for aerobic oxidation of acetate assuming ϵ =0.4 and 0.6 at standard conditions except for a pH of 7.0. Ammonia is available for cell synthesis.

From O-1,
$$\Delta G_c^{0'} = 27.40 \ kJ/e^- \ eq$$

 $\Delta G_p = 35.09 - 27.40 = 7.69 \ kJ/e^- \ eq$
 $\Delta G_r = \Delta G_a - \Delta G_d = -78.72 - 27.40 = -106.12 \ kJ/e^- \ eq$
 $\Delta G_d = 27.40 \ kJ/e^- \ eq$, $\Delta G_a = -78.72 \ kJ/e^- \ eq$ (from I-14)
 $\Delta G_p > 0 \rightarrow n = +1$
 $A = -\frac{\Delta G_p}{\varepsilon^n} + \frac{\Delta G_{pc}}{\varepsilon}}{\varepsilon \Delta G_r} = -\frac{\frac{7.69}{\varepsilon^{+1}} + \frac{18.8}{\varepsilon}}{-106.12\varepsilon}$
 $\epsilon = 0.4 : A = 1.56$
 $\epsilon = 0.6 : A = 0.69$
 $f_s^{0} = \frac{1}{1+A}$
 $r = f_s^{0} \frac{M_c}{\eta_e \cdot (8 \ g \ COD/e^- \ eq)}$
 $f_s^{0} = 0.39, \ Y = 0.28 \ g \ cells/g \ COD$