Microbial kinetics

Today's class

- Monod kinetics
- Addressing decay
- Relating the substrate utilization with the microbial growth

Monod equation

$$\mu_{syn} = \left(\frac{1}{X_a} \cdot \frac{dX_a}{dt}\right)_{syn} = \hat{\mu} \frac{S}{K + S}$$

```
where \mu_{syn} = specific growth rate due to synthesis (T^{-1})

X_a = concentration of active biomass (M_x L^{-3})

S = concentration of the rate-limiting substrate (M_s L^{-3})

\hat{\mu} = maximum specific growth rate (T^{-1})

K = half saturation coefficient (M_s L^{-3})
```

Monod equation: S vs. μ

Typical values for f_s^o , Y, \hat{q} , and $\hat{\mu}$

Organism Type	Electron Donor	Electron Acceptors	C-Source	f_s^{o}	Y	\widehat{q}	$\widehat{\mu}$
Aerobic,	Carbohydrate BOD	O ₂	BOD	0.7	0.49 g VSS/g BOD _L	27 gBOD _L /gVSS-d	13.2
Heterotrophs	Other BOD	O ₂	BOD	0.6	0.42 g VSS/g BOD _L	20 gBOD _L /gVSS-d	8.4
Denitrifiers	BOD	NO ₃ -	BOD	0.5	0.25 g VSS/g BOD _L	16 gBOD _L /gVSS-d	4
	H ₂	NO ₃ -	CO ₂	0.2	0.81 g VSS/g H ₂	1.25 gH ₂ /gVSS-d	1
	S(s)	NO ₃ -	CO ₂	0.2	0.15 g VSS/g S	6.7 gS/gVSS-d	1
Nitrifying Autotrophs	NH ₄ ⁺ NO ₂ ⁻	O ₂ O ₂	CO ₂ CO ₂	0.14 0.10	0.34 g VSS/g NH ₄ +-N 0.08 g VSS/g NO ₂ N	2.7 g NH ₄ +-N/g VSS- d 7.8 g NO ₂ N/g VSS-d	0.92 0.62
Methanotrophs	Acetate BOD	acetate	acetate	0.05	0.035 g VSS/g BOD _L	8.4 g BOD _L /g VSS-d	0.3
	H ₂	CO ₂	CO ₂	0.08	0.45 g VSS/g H ₂	1.1 g H ₂ /g VSS-d	0.5
Sulfide Oxidizing Autotrophs	H ₂ S	O ₂	CO ₂	0.2	0.28 g VSS/g H ₂ S-S	5 g S/g VSS-d	1.4
Sulfate Reducers	H ₂	SO ₄ ²⁻	CO ₂	0.05	0.28 gVSS/gH ₂	1.05 gH ₂ /gVSS-d	0.29
	Acetate BOD	SO ₄ ²⁻	acetate	0.08	0.057 gVSS/gBOD _L	8.7 gBOD _L /gVSS-d	0.5
Fermenters	Sugar BOD	sugars	sugars	0.18	0.13 g VSS/g BOD _L	9.8 g BOD _L /g VSS-d	1.2

Y is computed assuming a cellular VSS_a composition of $C_5H_7O_2N$, and NH_4^+ is the N source, except when NO_3^- is the electron acceptor; then NO_3^- is the N source.

 $\hat{\mu}$ has units of d⁻¹.

Source: Environmental Biotechnology textbook

Typical values for *K*

Process	K (mg substrate/L)			
Aerobic:				
organic mixtures	50-150 mg COD/L			
single organics	1-10 mg COD/L			
nitrification	0.4-2 mg NH ₃ -N/L			
Anaerobic:				
denitrification	0.06-0.20 mg NO ₃ N/L			
methane fermentation:				
acetate, propionate	600-900 mg COD/L			
sewage sludge	2000-3000 mg COD/L			

Addressing decay

 As discussed in the previous class, we assume decay is proportional to cell biomass

$$\left(\frac{dX_a}{dt}\right)_{decay} = -bX_a$$

in the form of specific growth rate,

$$\mu_{dec} = \left(\frac{1}{X_a} \cdot \frac{dX_a}{dt}\right)_{decay} = -b$$

where μ_{dec} = specific growth rate due to decay (T⁻¹) b = decay coefficient (T⁻¹)

Overall bacterial growth kinetics

(Net growth) = (New growth) + (Decay)

$$\mu = \frac{1}{X_a} \cdot \frac{dX_a}{dt} = \mu_{syn} + \mu_{dec} = \hat{\mu} \frac{S}{K + S} - b$$

where μ = net specific growth rate (T^{-1})

Growth kinetics with decay

More on decay

$$\mu_{dec} = \left(\frac{1}{X_a} \cdot \frac{dX_a}{dt}\right)_{decay} = -b$$

- Most fraction ($f_d \approx 0.8$) is oxidized
- The other fraction $(1-f_d \approx 0.2)$ is accumulated as inert biomass

Rate of oxidation (respiration):
$$\left(\frac{1}{X_a} \cdot \frac{dX_a}{dt}\right)_{resp} = -f_d b$$

Rate of conversion to inert biomass:

$$\left(\frac{1}{X_a} \cdot \frac{dX_a}{dt}\right)_{inert} = -\frac{1}{X_a} \cdot \frac{dX_i}{dt} = -(1 - f_d)b$$

$$X_i = \text{inert biomass } (M_x L^{-3})$$

Substrate utilization rate

Recall that,
$$Y = \frac{(g \text{ new cells produced})}{(g \text{ substrate utilized})} = \frac{(dX_a/dt)_{syn}}{-dS/dt}$$

and

$$\mu_{syn} = \left(\frac{1}{X_a} \cdot \frac{dX_a}{dt}\right)_{syn} = \frac{1}{X_a} \left(\frac{dX_a}{dt}\right)_{syn} = \hat{\mu} \frac{S}{K + S}$$

So Monod equation can be rewritten as:

$$\frac{dS}{dt} = -\frac{1}{Y} \left(\frac{dX_a}{dt} \right)_{syn} = -\frac{\hat{\mu}}{Y} \frac{S}{K+S} X_a$$

Substrate utilization rate, r_{ut} [$M_sL^{-3}T^{-1}$]

$$r_{ut} = \frac{dS}{dt} = -\frac{\hat{q}S}{K+S}X_a$$

 $\hat{q} = \hat{\mu}/Y$, max. specific rate of substrate utilization $(M_s M_x^{-1} T^{-1})$

Alternate rate expressions

Contois equation

$$r_{ut} = -\frac{\hat{q}S}{BX_a + S}X_a$$

$$B = \text{constant } [M_s/M_x]$$

When
$$X_a \to \infty$$
, $r_{ut} = -\frac{\hat{q}}{B}S$

(at high biomass concentrations substrate utilization depends on S, not X_a)

Alternate rate expressions

Moser equation

$$r_{ut} = -\frac{\hat{q}S}{K + S^{-\gamma}}X_a$$
 $\gamma = \text{constant [unitless]}$

Tessier equation

$$r_{ut} = -\hat{q}(1 - e^{S/K})X_a$$

Just **REMEMBER** that Monod Eq. is **NOT** the only option!!!

Monod equation: extension

$$r_{ut} = -\hat{q} \frac{S}{K+S} \frac{A}{K_A + A} X_a$$

 $A = e^{-}$ acceptor concentration $[M_A/L^3]$ $K_A = half$ -saturation coefficient for e^{-} acceptor $[M_A/L^3]$

- e⁻ acceptor can also be limiting!
- Can be reduced to single Monod eq. if $A >> K_A$
- Terms for other limiting substances can be added as well (e.g., N, P)