
U Kang

Reinforcement Learning

On-policy Prediction with
Approximation

U Kang
Seoul National University

U Kang

In This Lecture

 On-policy value function approximation
 Gradient based methods
 Linear methods
 Nonlinear methods
 Features for methods

U Kang

Overview

 Function approximation in RL for estimating the state-value function
from on-policy data

 The approximate value function is represented not as a table but as a
parameterized functional form with weight vector 𝑤 ∈ 𝑅𝑑

 ො𝑣(𝑠, 𝑤) ≈ 𝑣𝜋(𝑠) denotes the approximate value of state s given weight
vector w

 E.g., ො𝑣 might be a linear function in features of the state, with w the
vector of feature weights

 E.g., ො𝑣 might be the function computed by a multi-layer artificial neural
network, with w the vector of connection weights in all the layers; by
adjusting the weights, any of a wide range of different functions can be
implemented by the network

 E.g., ො𝑣 might be the function computed by a decision tree, where w is all
the numbers defining the split points and leaf values of the tree

U Kang

Overview

 Typically, the number of weights (the dimensionality of w) is much less
than the number of states (𝑑 ≪ |𝑆|), and changing one weight changes
the estimated value of many states

 Consequently, when a single state is updated, the change generalizes
from that state to affect the values of many other states

 Such generalization makes the learning potentially more powerful but
also potentially more difficult to manage and understand

U Kang

Outline

Value-function Approximation
The Prediction Objective (𝑉𝐸)
Stochastic-gradient and Semi-gradient Methods
Linear Methods
Feature Construction for Linear Methods
Selecting Step-Size Parameters Manually
Nonlinear Function Approximation: Neural Networks
Least-Squares TD
Memory-based Function Approximation
Kernel-based Function Approximation
Looking Deeper at On-policy Learning: Interest and Emphasis
Conclusion

U Kang

Value-function Approximation

 All of the prediction methods up to this point have been described as
updates to an estimated value function that shifts its value at particular
states toward a “backed-up value,” or update target, for that state

 Let us refer to an individual update by the notation 𝑠 → 𝑢, where s is
the state updated and u is the update target that s’s estimated value is
shifted toward
 MC: 𝑆𝑡 → 𝐺𝑡
 TD(0): 𝑆𝑡 → 𝑅𝑡+1 + 𝛾 ො𝑣(𝑆𝑡+1, 𝑤𝑡)

 n-step TD: 𝑆𝑡 → 𝐺𝑡:𝑡+𝑛
 DP: 𝑠 → 𝐸𝜋[𝑅𝑡+1 + 𝛾 ො𝑣(𝑆𝑡+1, 𝑤𝑡)|𝑆𝑡 = 𝑠]

 Note that DP updates all states, while other methods update the state
encountered in actual experience for each update

U Kang

Value-function Approximation

 Each update is interpreted as specifying an example of the desired
input–output behavior of the value function

 In a sense, the update 𝑠 → 𝑢 means that the estimated value for state s
should be more like the update target u

 Tabular method: the table entry for s’s estimated value is shifted a
fraction of the way toward u, and the estimated values of all other
states were left unchanged

 Function approximation: arbitrarily complex and sophisticated
functions are used to implement the update, and updating at s
generalizes so that the estimated values of many other states are
changed as well

 Function approximation methods receive examples (training data) of
the desired input–output behavior of the function they are trying to
approximate

U Kang

Value-function Approximation

 Viewing each update as a conventional training example in this way
enables us to use any of a wide range of existing function
approximation methods for value prediction

 We can use any method for supervised learning from examples,
including artificial neural networks, decision trees, and various kinds of
multivariate regression

 However, not all function approximation methods are equally well
suited for use in RL

 The most sophisticated artificial neural network and statistical methods
all assume a static training set over which multiple passes are made

U Kang

Value-function Approximation

 In RL, however, it is important that learning be able to occur online,
while the agent interacts with its environment or with a model of its
environment

 To do this requires methods that are able to learn efficiently from
incrementally acquired data

 In addition, RL generally requires function approximation methods
able to handle nonstationary target functions (target functions that
change over time)

 E.g., in control methods based on GPI (generalized policy iteration) we
often seek to learn 𝑞𝜋 while 𝜋 changes

 Even if the policy remains the same, the target values of training
examples are nonstationary if they are generated by bootstrapping
methods (DP and TD learning)

 Methods that cannot easily handle such nonstationarity are less
suitable for RL

U Kang

Value-function Approximation

𝑤
State

feature vector
𝑉(𝑠; 𝑤)

𝑤
State-action

feature vector
𝑄(𝑠, 𝑎; 𝑤)

U Kang

Outline

Value-function Approximation
The Prediction Objective (𝑽𝑬)
Stochastic-gradient and Semi-gradient Methods
Linear Methods
Feature Construction for Linear Methods
Selecting Step-Size Parameters Manually
Nonlinear Function Approximation: Neural Networks
Least-Squares TD
Memory-based Function Approximation
Kernel-based Function Approximation
Looking Deeper at On-policy Learning: Interest and Emphasis
Conclusion

U Kang

The Prediction Objective (𝑽𝑬)

 Up to now we have not specified an explicit objective for prediction
 In the tabular case a continuous measure of prediction quality was not

necessary because the learned value function could come to equal the
true value function exactly; moreover, the learned values at each state
were decoupled—an update at one state affected no other

 With genuine approximation, an update at one state affects many
others, and it is not possible to get the values of all states exactly
correct

 By assumption we have far more states than weights, so making one
state’s estimate more accurate invariably means making others’ less
accurate

 We are obligated then to say which states we care most about
 We must specify a state distribution 𝜇(𝑠) ≥ 0, σ𝑠 𝜇 𝑠 = 1,

representing how much we care about the error in each state s

U Kang

The Prediction Objective (𝑽𝑬)

 The error in a state s: the square of the difference between the
approximate value ො𝑣(𝑠, 𝑤) and the true value 𝑣𝜋(𝑠)

 Weighting this over the state space by 𝜇, we obtain a natural objective
function 𝑉𝐸, the Mean Squared Value Error

VE(w) =

s∈𝒮

𝜇 s 𝜐𝜋 s − ො𝜐 𝑠, 𝑤 2

 The square root of this measure, the root VE, gives a rough measure of
how much the approximate values differ from the true values

 Often 𝜇(𝑠) is chosen to be the fraction of time spent in s
 Under on-policy training this is called the on-policy distribution
 In continuing tasks, the on-policy distribution is the stationary

distribution under 𝜋

U Kang

The Prediction Objective (𝑽𝑬)

 The on-policy distribution in an episodic task
 Depends on how the initial states of episodes are chosen
 Let h(s) denote the probability that an episode begins in each state s, and

let 𝜂(s) denote the number of time steps spent, on average, in state s in a
single episode

 Time is spent in a state s if episodes start in s, or if transitions are made into
s from a preceding state ҧ𝑠 in which time is spent

𝜂(s) = h(s) +

തs

𝜂(തs)

a

𝜋(a|തs)p(s|തs, a)

 This system of equations can be solved for the expected number of visits
𝜂(s). The on-policy distribution is then the fraction of time spent in each
state normalized to sum to one

𝜇 s =
𝜂 s

σs’ 𝜂(s′)
, for all s ∈ 𝒮

 If there is discounting (𝛾 < 1), we include a factor of 𝛾 at

U Kang

The Prediction Objective (𝑽𝑬)

 It is not completely clear that the VE is the right performance objective
for RL

 Remember that our ultimate purpose—the reason we are learning a
value function—is to find a better policy

 The best value function for this purpose is not necessarily the best for
minimizing 𝑉𝐸

 Nevertheless, it is not yet clear what a more useful alternative goal for
value prediction might be

U Kang

The Prediction Objective (𝑽𝑬)

 An ideal goal in terms of 𝑉𝐸 would be to find a global optimum, a
weight vector w* for which 𝑉𝐸(𝑤∗) ≤ 𝑉𝐸(𝑤) for all possible w

 Reaching this goal is sometimes possible for simple function
approximators (FAs) such as linear ones, but is rarely possible for
complex FAs such as artificial neural networks and decision trees

 Instead, complex FAs may seek to converge to a local optimum, a
weight vector w* which 𝑉𝐸(𝑤∗) ≤ 𝑉𝐸(𝑤) for all w in some
neighborhood of w*

 Although this guarantee is only slightly reassuring, it is typically the
best that can be said for nonlinear FAs, and often it is enough

U Kang

Outline

Value-function Approximation
The Prediction Objective (𝑉𝐸)
Stochastic-gradient and Semi-gradient Methods
Linear Methods
Feature Construction for Linear Methods
Selecting Step-Size Parameters Manually
Nonlinear Function Approximation: Neural Networks
Least-Squares TD
Memory-based Function Approximation
Kernel-based Function Approximation
Looking Deeper at On-policy Learning: Interest and Emphasis
Conclusion

U Kang

Stochastic-gradient and Semi-
gradient Methods

 We discuss learning methods for function approximation (FA) in value
prediction based on stochastic gradient descent (SGD)

 SGD methods are among the most widely used for all FA methods and
are particularly well suited to online RL

U Kang

Stochastic-gradient and Semi-
gradient Methods

 In SGD, the weight vector 𝒘 = (𝑤1, 𝑤2, … , 𝑤𝑑)
𝑇 is a column vector with

a fixed number of real valued components, and the approximate value
function ො𝑣(𝑠,𝒘) is a differentiable function of w for all s

 𝒘𝑡 means the weight vector updated at each step t=0, 1, 2, …
 Assume that, on each step, we observe a new example 𝑆𝑡 → 𝑣𝜋(𝑆𝑡)

consisting of a state 𝑆𝑡 and its true value under the policy
 Even though we are given the exact, correct values, 𝑣𝜋(𝑆𝑡) for each 𝑆𝑡,

there is still a difficult problem because our FA has limited resources
and thus limited resolution

 There is generally no w that gets all the states, or even all the
examples, exactly correct. In addition, we must generalize to all the
other states that have not appeared in examples

U Kang

Stochastic-gradient and Semi-
gradient Methods

 We assume that states appear in examples with the same distribution,
𝜇, over which we are trying to minimize the 𝑉𝐸

 A good strategy is to minimize error on the observed examples
 SGD methods do this by adjusting the weight vector after each

example by a small amount in the direction that would most reduce the
error on that example

wt+1 = wt −
1

2
𝛼𝛻 𝜐𝜋 St − ො𝜐 St, wt

2

= wt + 𝛼[𝜐𝜋 St − ො𝜐 St, wt]𝛻ො𝜐(St, wt)

 where 𝛼 > 0 is a step size
 𝛻𝑓(𝒘) means the gradient of f wrt w

𝛻𝑓 𝑤 =
𝜕f w

𝜕w1
,
𝜕f w

𝜕w2
, … ,

𝜕f w

𝜕wd

T

U Kang

Aside: Gradient

 Functions with multiple inputs: f : 𝑅𝑛 → 𝑅

 Partial derivative 𝜕

𝜕𝑥𝑖
𝑓(𝒙) measures how f changes

as only the variable 𝑥𝑖 increases at point 𝒙.
 Gradient 𝛻𝒙𝑓(𝒙) of f is the vector containing all the

partial derivatives
 Critical points: every element of the gradient is

equal to 0

U Kang

Aside: Gradient

 𝑓 𝒙 = 𝒄𝑇𝒙

 𝛻𝒙𝑓 𝒙 = 𝒄

 𝑓 𝒙 = 𝒙𝑇𝒙

 𝛻𝒙𝑓 𝒙 = 2𝒙

 𝑓 𝒙 = 𝒙𝑇𝑨𝒙, for symmetric 𝑨
 𝛻𝒙𝑓 𝒙 = 2𝑨𝒙

U Kang

Aside: Chain Rule of Calculus

 Let x be a real number, and f and g be functions
from R to R. Suppose y = g(x), and z = f(g(x)) = f(y).
Then the chain rule states that 𝑑𝑧

𝑑𝑥
=

𝑑𝑧

𝑑𝑦

𝑑𝑦

𝑑𝑥

 Suppose 𝑥 ∈ 𝑅𝑚, 𝑦 ∈ 𝑅𝑛, 𝑔: 𝑅𝑚 → 𝑅𝑛, 𝑓: 𝑅𝑛 → 𝑅. If
𝒚 = 𝑔(𝒙) and 𝑧 = 𝑓(𝒚), then 𝜕𝑧

𝜕𝑥𝑖
= σ𝑗

𝜕𝑧

𝜕𝑦𝑗

𝜕𝑦𝑗

𝜕𝑥𝑖

 In vector notation: 𝛻𝒙𝑧 = (
𝜕𝒚

𝜕𝒙
)𝑇𝛻𝒚𝑧, where 𝜕𝒚

𝜕𝒙
is the n

x m Jacobian matrix of g
 E.g., suppose 𝑧 = (𝑦 − 𝑐)2, and y = 𝑔 𝒙 . Then 𝛻𝒙𝑧 =
(
𝜕𝒚

𝜕𝒙
)𝑇𝛻𝒚𝑧 = 2(𝑦 − 𝑐)𝛻𝒙𝑔(𝑥)

U Kang

Stochastic-gradient and Semi-
gradient Methods

 We turn now to the case in which the target output 𝑈𝑡 ∈ 𝑅 of the t th
training example, 𝑆𝑡 → 𝑈𝑡 is not the true value 𝑣𝜋(𝑆𝑡), but some,
possibly random, approximation to it

 E.g., 𝑈𝑡 might be a noise-corrupted version of 𝑣𝜋(𝑆𝑡), or it might be
one of the bootstrapping targets

 In these cases we cannot perform the exact update because 𝑣𝜋(𝑆𝑡) is
unknown, but we can approximate it by substituting 𝑈𝑡 for 𝑣𝜋(𝑆𝑡)

 This leads to the general SGD method for state-value prediction:
wt+1 = wt + 𝛼 Ut − ො𝜐 St, wt 𝛻ො𝜐(St, wt)

 If 𝑈𝑡 is an unbiased estimate, that is, if E 𝑈𝑡 𝑆𝑡 = 𝑠 = 𝑣𝜋(𝑆𝑡), for each
t, then 𝑤𝑡 is guaranteed to converge to a local optimum under the
usual stochastic approximation conditions for decreasing 𝛼

U Kang

Stochastic-gradient and Semi-
gradient Methods

 For example, suppose the states in the examples are the states
generated by interaction (or simulated interaction) with the
environment using policy 𝜋

 Because the true value of a state is the expected value of the return
following it, the MC target 𝑈𝑡 = 𝐺𝑡 is by definition an unbiased
estimate of 𝑣𝜋(𝑆𝑡)

 With this choice, the general SGD method converges to a locally
optimal approximation to 𝑣𝜋(𝑆𝑡)

 Thus, the gradient-descent version of MC state-value prediction is
guaranteed to find a locally optimal solution

U Kang

Stochastic-gradient and Semi-
gradient Methods

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Stochastic-gradient and Semi-
gradient Methods

 One does not obtain the same guarantees if a bootstrapping estimate
of 𝑣𝜋(𝑆𝑡) is used as the target 𝑈𝑡

 Bootstrapping targets such as n-step returns 𝐺𝑡:𝑡+𝑛 or the DP target
σ𝑎,𝑠′,𝑟 𝜋(𝑎|𝑆𝑡)𝑝 𝑠′, 𝑟 𝑆𝑡 , 𝑎 [𝑟 + 𝛾 ො𝑣(𝑠′, 𝑤𝑡)] all depend on the current
value of the weight vector 𝑤𝑡, which implies that they will be biased
and that they will not produce a true gradient-descent method

wt+1 = wt −
1

2
𝛼𝛻 𝜐𝜋 St − ො𝜐 St, wt

2

= wt + 𝛼[𝜐𝜋 St − ො𝜐 St, wt]𝛻ො𝜐(St, wt)

 Note that the key gradient step relies on the target being independent
of 𝑤𝑡. This step would not be valid if a bootstrapping estimate were
used in place of 𝑣𝜋(𝑆𝑡)

U Kang

Stochastic-gradient and Semi-
gradient Methods

wt+1 = wt −
1

2
𝛼𝛻 𝜐𝜋 St − ො𝜐 St, wt

2

= wt + 𝛼[𝜐𝜋 St − ො𝜐 St, wt]𝛻ො𝜐(St, wt)

 Bootstrapping methods are not in fact instances of true gradient
descent

 They take into account the effect of changing the weight vector 𝑤𝑡 on
the estimate, but ignore its effect on the target

 They include only a part of the gradient and, accordingly, we call them
semi-gradient methods

U Kang

Stochastic-gradient and Semi-
gradient Methods

 Although semi-gradient (bootstrapping) methods do not converge as
robustly as gradient methods, they do converge reliably in important
cases such as the linear case

 Advantages of semi-gradient methods
 They typically enable significantly faster learning (e.g., TD)
 They enable learning to be continual and online, without waiting for the

end of an episode. This enables them to be used on continuing problems
and provides computational advantages

 E.g., semi-gradient TD(0) uses 𝑈𝑡 = 𝑅𝑡+1 + ො𝑣(𝑆𝑡+1, 𝑤)

U Kang

Stochastic-gradient and Semi-
gradient Methods

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Stochastic-gradient and Semi-
gradient Methods

𝑆

𝐴1

𝐴2

𝐴3

𝑊

Chosen action
with 𝜋(⋅ |𝑆)

𝑆′

𝑆′𝑅

Observed R, 𝑆′+𝛼 𝑅 + 𝛾ො𝜐 𝑆′, 𝑤 − ො𝜐 𝑆, 𝑤 𝛻ො𝜐(𝑆, 𝑤)

U Kang

Stochastic-gradient and Semi-
gradient Methods

 State aggregation is a simple form of generalizing function
approximation in which states are grouped together, with one
estimated value (one component of the weight vector w) for each
group

 The value of a state is estimated as its group’s component, and when
the state is updated, that component alone is updated

 State aggregation is a special case of SGD where the gradient,
𝛻 ො𝑣(𝑆𝑡+1, 𝑤𝑡) is 1 for 𝑆𝑡 ’s group’s component and 0 for the other
components

State Value

𝑠1 𝑤1

𝑠2 𝑤1

𝑠3 𝑤1

𝑠4 𝑤2

𝑠5 𝑤2

𝑠6 𝑤2

x(s) = [1 0]T

x(s) = [0 1]T

ො𝑣 𝑠, 𝑤 = 𝑤𝑇𝑥(𝑠)

U Kang

Example: State Aggregation

 Consider a 1000-state version of the random walk task
 The states are numbered from 1 to 1000, left to right, and all episodes

begin near the center, in state 500. State transitions are from the
current state to one of the 100 neighboring states to its left, or to one
of the 100 neighboring states to its right, all with equal probability

 If the current state is near an edge, then there may be fewer than 100
neighbors on that side of it. In this case, all the probability that would
have gone into those missing neighbors goes into the probability of
terminating on that side (thus, state 1 has a 0.5 chance of terminating
on the left, and state 950 has a 0.25 chance of terminating on the right)

 Termination on the left produces a reward of −1, and termination on
the right produces a reward of +1. All other transitions have a reward
of zero

U Kang

Example: State Aggregation

 The true value function 𝑣𝜋 is nearly a straight line
 The final approximate value function is shown as well; it is learned by

the gradient MC algorithm with state aggregation after 100,000
episodes with a step size of 𝛼 = 2 ∗ 10−5

 For the state aggregation, the 1000 states were partitioned into 10
groups of 100 states each (i.e., states 1–100 were one group, states
101–200 were another, and so on)

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: State Aggregation

 The staircase effect is typical of state aggregation; within each group,
the approximate value is constant, and it changes abruptly from one
group to the next

 These approximate values are close to the global minimum of the 𝑉𝐸

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: State Aggregation

 State 500, in the center, is the first state of every episode, but is rarely visited
again. On average, about 1.37% of the time steps are spent in the start state

 The most visible effect of the distribution is on the leftmost groups, whose
values are clearly shifted higher than the unweighted average of the true
values of states within the group, and on the rightmost groups, whose values
are clearly shifted lower

 This is due to the states in these areas having the greatest asymmetry in their
weightings by 𝜇; e.g., in the leftmost group, state 100 is weighted more than 3
times than state 1. Thus the estimate for the group is biased toward the true
value of state 100, which is higher than the true value of state 1

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

Value-function Approximation
The Prediction Objective (𝑉𝐸)
Stochastic-gradient and Semi-gradient Methods
Linear Methods
Feature Construction for Linear Methods
Selecting Step-Size Parameters Manually
Nonlinear Function Approximation: Neural Networks
Least-Squares TD
Memory-based Function Approximation
Kernel-based Function Approximation
Looking Deeper at On-policy Learning: Interest and Emphasis
Conclusion

U Kang

Linear Methods

 One of the most important special cases of function approximation is
that in which the approximate function, ො𝑣(∙, 𝑤), is a linear function of
the weight vector, w

 Corresponding to every state s, there is a real-valued vector 𝑥 𝑠 =
(𝑥1 𝑠 , 𝑥2 𝑠 , … , 𝑥𝑑 𝑠)𝑇 with the same number of components as w

 Linear methods approximate state-value function by the inner product
between w and x(s):

ො𝜐(s, w) = wTx(s) =

i=1

d

wixi(s)

 In this case the approximate value function is said to be linear in the
weights, or simply linear

 The vector 𝑥 𝑠 is called a feature vector representing state s. Each
component 𝑥𝑖 𝑠 of 𝑥 𝑠 is the value of a function 𝑥𝑖: 𝑆 → 𝑅

U Kang

Linear Methods

 It is natural to use SGD updates with linear function approximation.
 The gradient of the approximate value function with respect to w in

this case is: 𝛻 ො𝑣 𝑠, 𝑤 = 𝑥(𝑠)

 In the linear case the general SGD update reduces to a simple form
wt+1 = wt + 𝛼[Ut − ො𝜐(St, wt)]x(St)

 Linear SGD is one of the most favorable for mathematical analysis due
to its simplicity

 In the linear case there is only one optimum, and thus any method that
is guaranteed to converge to or near a local optimum is automatically
guaranteed to converge to or near the global optimum

 E.g., the gradient MC converges to the global optimum of the 𝑉𝐸 under
linear function approximation if 𝛼 is reduced over time according to
the usual conditions

U Kang

Linear Methods

 The semi-gradient TD(0) algorithm also converges under linear FA
 The weight vector converged to is not the global optimum, but rather a

point near the local optimum
 The update of the weight vector at each time t is

𝑤t+1 = wt + 𝛼 Rt+1 + 𝛾wt
𝑇xt+1 −wt

Txt xt
= wt + 𝛼(Rt+1xt − xt xt − 𝛾xt+1

𝑇wt)

 where 𝑥𝑡 = 𝑥(𝑆𝑡)

 Once the system has reached steady state, for any given 𝑤𝑡, the
expected next weight vector can be written

𝔼 𝑤𝑡+1 𝑤𝑡 = 𝑤𝑡 + 𝛼(𝑏 − 𝐴𝑤𝑡)

 where
𝑏 = 𝔼 𝑅𝑡+1𝑥𝑡 ∈ ℝ𝑑𝑎𝑛𝑑 𝐴 = 𝔼 𝑥𝑡 𝑥𝑡 − 𝛾𝑥𝑡+1

𝑇 ∈ ℝ𝑑 × ℝ𝑑

U Kang

Linear Methods

 It is clear that, if the system converges, it must converge to the weight
vector 𝑤𝑇𝐷 at which

𝑏 − 𝐴𝑤𝑇𝐷 = 0
→ 𝑏 = 𝐴𝑤𝑇𝐷

→ 𝑤𝑇𝐷 = 𝐴−1𝑏

 This quantity is called the TD fixed point. Linear semi-gradient TD(0)
converges to this point

U Kang

Linear Methods

 At the TD fixed point, it has also been proven (in the continuing case)
that the 𝑉𝐸 is within a bounded expansion of the lowest possible error

𝑉𝐸 𝑤𝑇𝐷 ≤
1

1 − 𝛾
min
𝑤

𝑉𝐸(𝑤)

 That is, the asymptotic error of the TD method is no more than 1

1−𝛾

times the smallest possible error, that attained in the limit by the MC
method

 Because 𝛾 is often near one, this expansion factor can be quite large,
so there is substantial potential loss in asymptotic performance with
the TD method

 On the other hand, recall that the TD methods are often of vastly
reduced variance compared to MC methods, and thus faster

 Which method is better depends on the nature of the approximation
and problem, and on how long learning continues

U Kang

Linear Methods

 A similar bound applies to other on-policy bootstrapping methods
 E.g., linear semi-gradient DP

𝑤𝑡+1 = 𝑤𝑡 + 𝛼 𝑈𝑡 − ො𝜐 𝑆𝑡 , 𝑤𝑡 𝛻ො𝜐(𝑆𝑡 , 𝑤𝑡)

 with updates according to the on-policy distribution will also converge to
the TD fixed point

 One-step semi-gradient action-value methods, such as semi-gradient
Sarsa(0) converge to an analogous fixed point and an analogous bound

 For episodic tasks, there is a slightly different but related bound
 Critical to the these convergence results is that states are updated

according to the on-policy distribution. For other update distributions,
bootstrapping methods using function approximation may actually
diverge to infinity

𝑈𝑡 =
𝑎
𝜋(𝑎|𝑆𝑡)𝑝 𝑠′, 𝑟 𝑆𝑡 , 𝑎 [𝑟 + 𝛾 ො𝑣(𝑠′, 𝑤𝑡)]

U Kang

Example: Bootstrapping on 1000-
state Random Walk

 State aggregation is a special case of linear function approximation
 The figure shows the final value function learned by the semi-gradient

TD(0) algorithm using the state aggregation, in 1000-state random
walk example

 Note that the near-asymptotic TD approximation is indeed farther from
the true values than the Monte Carlo approximation

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Bootstrapping on 1000-
state Random Walk

 Nevertheless, TD methods retain large potential advantages in learning
rate, and generalize MC methods

 The figure shows results with an n-step semi-gradient TD method using
state aggregation on the 1000-state random walk that are strikingly
similar to those we obtained earlier with tabular methods and the 19-
state random walk

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Linear Methods

 The semi-gradient n-step TD algorithm is the natural extension of the
tabular n-step TD algorithm to semi-gradient FA

 Key equation:
𝑤𝑡+𝑛 = 𝑤𝑡+𝑛−1 + 𝛼 𝐺𝑡:𝑡+𝑛 − ො𝜐 𝑆𝑡 , 𝑤𝑡+𝑛−1 𝛻ො𝜐 𝑆𝑡 , 𝑤𝑡+𝑛−1 , 0 ≤ 𝑡 < 𝑇

 where the n-step return is generalized to
𝐺𝑡:𝑡+𝑛 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯+ 𝛾𝑛−1𝑅𝑡+𝑛 + 𝛾𝑛 ො𝜐(𝑆𝑡+𝑛, 𝑤𝑡+𝑛−1)

, 0 ≤ 𝑡 ≤ 𝑇 − 𝑛

U Kang

Linear Methods

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

Value-function Approximation
The Prediction Objective (𝑉𝐸)
Stochastic-gradient and Semi-gradient Methods
Linear Methods
Feature Construction for Linear Methods
Selecting Step-Size Parameters Manually
Nonlinear Function Approximation: Neural Networks
Least-Squares TD
Memory-based Function Approximation
Kernel-based Function Approximation
Looking Deeper at On-policy Learning: Interest and Emphasis
Conclusion

U Kang

Feature Construction for Linear
Methods

 Linear methods are interesting because of their convergence
guarantees, but also because in practice they can be very efficient in
terms of both data and computation

 Choosing features appropriate to the task is an important way of
adding prior domain knowledge to RL systems

 Intuitively, the features should correspond to the aspects of the state
space along which generalization may be appropriate

 If we are valuing geometric objects, for example, we might want to
have features for each possible shape, color, size, or function

 If we are valuing states of a mobile robot, then we might want to have
features for locations, degrees of remaining battery power, recent
sonar readings, and so on

U Kang

Feature Construction for Linear
Methods

 A limitation of the linear form is that it cannot take into account any
interactions between features, such as the presence of feature i being
good only in the absence of feature j

 E.g., in the pole-balancing task, high angular velocity can be either
good or bad depending on the angle. If the angle is high, then high
angular velocity means an imminent danger of falling—a bad state—
whereas if the angle is low, then high angular velocity means the pole
is righting itself—a good state

 A linear value function could not represent this if its features are coded
separately for the angle and the angular velocity

 It needs instead, or in addition, features for combinations of these two
underlying state dimensions

U Kang

Polynomials

 Polynomials make up one of the simplest families of features used for
interpolation and regression

 Suppose a RL problem has states ∈ 𝑅2; i.e., a state s is represented by
two scalars 𝑠1 and 𝑠2

 If we set 𝑥 𝑠 = (𝑠1, 𝑠2)
𝑇, we cannot take into account any interactions

between these dimensions; also, if both 𝑠1 and 𝑠2 are 0, then the value
function would be 0

 Setting 𝑥 𝑠 = (1, 𝑠1, 𝑠2, 𝑠1𝑠2)
𝑇 addresses the problem

 We can even set 𝑥 𝑠 = (1, 𝑠1, 𝑠2, 𝑠1𝑠2, 𝑠1
2, 𝑠2

2, 𝑠1𝑠2
2, 𝑠1

2𝑠2, 𝑠1
2𝑠2

2)𝑇 to
take more complex interaction into account

U Kang

Polynomials

 In general, let each state s corresponds to k numbers 𝑠1, 𝑠2, … , 𝑠𝑘

 Each order-n polynomial-basis feature 𝑥𝑖 is given by 𝑥𝑖 = ς𝑗=1
𝑘 𝑠𝑗

𝑐𝑗

where each 𝑐𝑗 is an integer in the set {0, 1, … n} for an integer 𝑛 ≥ 0

 These features make up the order-n polynomial basis for dimension k,
which contains (𝑛 + 1)𝑘 different features

 Higher-order polynomial bases allow for more accurate
approximations of more complicated functions

 But because the number of features in an order-n polynomial basis
grows exponentially with the dimension k of the natural state space, it
is generally necessary to select a subset of them

 This can be done using prior beliefs about the nature of the function to
be approximated, and some automated selection methods developed
for polynomial regression can be adapted to RL

U Kang

Fourier Basis

 Fourier series expresses periodic functions as weighted sums of sine
and cosine basis functions (features) of different frequencies

 A function f is periodic if 𝑓 𝑥 = 𝑓(𝑥 + 𝜏) for all x and some period 𝜏
 Fourier series and the more general Fourier transform are widely used

in applied sciences in part because if a function to be approximated is
known, then the basis function weights are given by simple formulae
and, further, with enough basis functions essentially any function can
be approximated as accurately as desired

 In RL, where the functions to be approximated are unknown, Fourier
basis functions are of interest because they are easy to use and can
perform well in a range of RL problems

U Kang

Fourier Basis

 Assume the features are defined over the interval [0, 1]. The one-
dimensional order-n Fourier cosine basis consists of the n + 1 features

 for i=0, …, n
 1-D Fourier cosine features 𝑥𝑖, i=1, 2, 3, 4, for approximating functions

over the interval [0,1]

 Intuition: 𝑓 𝑠 = 𝑤1 + 𝑤2 ⋯
Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Fourier Basis

 Fourier cosine series approximation in k-D case
 Suppose each state s corresponds to a vector of k numbers, 𝑠 =

(𝑠1, 𝑠2, … , 𝑠𝑘)
𝑇, with each 𝑠𝑖 ∈ [0,1]

 The ith feature in the order-n Fourier cosine basis can be written
𝑥𝑖 𝑠 = cos(𝜋𝑠𝑇𝑐𝑖) where 𝑐𝑖 = (𝑐1

𝑖 , … , 𝑐𝑘
𝑖)𝑇, with 𝑐𝑗𝑖 ∈ {0,… , 𝑛} for j = 1,

…, k and 𝑖 = 0,… , (𝑛 + 1)𝑘

 This defines a feature for each of the (𝑛 + 1)𝑘 possible integer vectors
𝑐𝑖

 The inner product 𝑠𝑇𝑐𝑖 has the effect of assigning an integer in {0, . . .
,n} to each dimension of s

 Intuition: 𝑓 𝑠 = 𝑤1 + 𝑤2 ⋯

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Fourier Basis

 The ith feature in the order-n Fourier cosine basis can be written
𝑥𝑖 𝑠 = cos(𝜋𝑠𝑇𝑐𝑖) where 𝑐𝑖 = (𝑐1

𝑖 , … , 𝑐𝑘
𝑖)𝑇, with 𝑐𝑗𝑖 ∈ {0,… , 𝑛} for j = 1,

…, k and 𝑖 = 0,… , (𝑛 + 1)𝑘

 E.g., 2-D Fourier cosine features

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Fourier Basis

 Fourier cosine features with Sarsa can produce good performance
compared to several other collections of basis functions, including
polynomial and radial basis functions

 The number of features in the order-n Fourier basis grows
exponentially with the dimension of the state space, but if that
dimension is small enough (e.g., 𝑘 ≤ 5), then one can select n so that
all of the order-n Fourier features can be used

 This makes the selection of features more-or-less automatic

 For high dimension state spaces, however, it is necessary to select a
subset of these features. This can be done using prior beliefs, and
some automated selection methods

U Kang

Fourier Basis

 Fourier basis vs polynomials on the 1000-state random walk

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Coarse Coding

 Coarse coding
 Consider a task in which the natural

representation of the state set is a
continuous 2-D space

 One kind of representation for this
case is made up of features
corresponding to circles in state space

 If the state is inside a circle, then the
corresponding feature has the value 1
and is said to be present; otherwise
the feature is 0 and is said to be absent

 This kind of 1–0-valued feature is
called a binary feature

 Given a state, which binary features
are present indicate within which
circles the state lies, and thus coarsely
code for its location

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Coarse Coding

 Assuming linear gradient-descent FA, consider the effect of the size and
density of the circles

 Corresponding to each circle is a single weight (a component of w) that is
affected by learning

 If we train at one state, a point in the space, then the weights of all circles
intersecting that state will be affected

 If the circles are small, then the generalization will be over a short distance,
whereas if they are large, it will be over a large distance

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Coarse Coding

 The shape of the features will determine the nature of the generalization.
E.g., if they are not strictly circular, but are elongated in one direction, then
generalization will be similarly affected

 Features with large receptive fields give broad generalization, but might
also seem to limit the learned function to a coarse approximation, unable
to make discriminations much finer than the width of the receptive fields

 Happily, this is not the case. Initial generalization from one point to another
is indeed controlled by the size and shape of the receptive fields, but acuity,
the finest discrimination ultimately possible, is controlled more by the total
number of features

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Coarseness of Coarse
Coding Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Coarseness of Coarse
Coding

 This example illustrates the effect on learning of the size of the
receptive fields in coarse coding

 Linear FA based on coarse coding was used to learn a one-dimensional
square-wave function

 The values of this function were used as the targets, 𝑈𝑡
 With just one dimension, the receptive fields were intervals rather than

circles
 Learning was repeated with three different sizes of the intervals:

narrow, medium, and broad
 All three cases had the same density of features, about 50 over the

extent of the function being learned. Training examples were
generated uniformly at random over this extent

U Kang

Example: Coarseness of Coarse
Coding

 The figure shows the functions learned in all three cases over the
course of learning

 Note that the width of the features had a strong effect early in learning
 With broad features, the generalization tended to be broad; with

narrow features, only the close neighbors of each trained point were
changed, causing the function learned to be more bumpy

 However, the final function learned was affected only slightly by the
width of the features

U Kang

Tile Coding

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Tile Coding

 Tile coding is a form of coarse coding for multi-dimensional continuous
spaces that is computationally efficient

 In tile coding the receptive fields of the features are grouped into
partitions of the state space

 Each such partition is called a tiling, and each element of the partition
is called a tile

 E.g., the simplest tiling of a two-dimensional state space is a uniform
grid; the tiles or receptive field here are squares rather than the circles

 If just this single tiling were used, then the state indicated by a point
would be represented by the single feature whose tile it falls within;
generalization would be complete to all states within the same tile and
nonexistent to states outside it

 With just one tiling, we would not have coarse coding but just a case of
state aggregation

U Kang

Tile Coding

 To get the strengths of coarse coding requires overlapping receptive
fields, and by definition the tiles of a partition do not overlap

 To get true coarse coding with tile coding, multiple tilings are used,
each offset by a fraction of a tile width

 Every state, such as that indicated by the white spot, falls in exactly one
tile in each of the four tilings

 These four tiles correspond to four features that become active when
the state occurs; specifically, the feature vector x(s) has one component
for each tile in each tiling

 In this example there are 4x4x4 = 64 components, all of which will be 0
except for the four corresponding to the tiles that s falls within

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Tile Coding

 Advantage of multiple offset tilings (coarse coding) over a single tiling
on the 1000-state random walk example

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Tile Coding

 An immediate practical advantage of tile coding is that, because it works with
partitions, the overall number of features that are active at one time is the
same for any state; exactly one feature is present in each tiling, so the total
number of features present is always the same as the number of tilings

 This allows the step-size parameter 𝛼 to be set in an easy, intuitive way; e.g.,
choosing 𝛼 =

1

𝑛
, where n is the number of tilings, results in exact one-trial

learning

 If the example 𝑠 → 𝑣 is trained on, then whatever the prior estimate, ො𝑣(𝑠, 𝑤𝑡),
the new estimate will be ො𝑣 𝑠, 𝑤𝑡+1 = 𝑣

 Usually one wishes to change more slowly than this, to allow for generalization
and stochastic variation in target outputs. For example, one might choose 𝛼 =
1

10𝑛
, in which case the estimate for the trained state would move one-tenth of

the way to the target in one update, and neighboring states will be moved less,
proportional to the number of tiles they have in common

U Kang

Tile Coding

 Tile coding also gains computational advantages from its use of binary
feature vectors

 Because each component is either 0 or 1, the weighted sum making up
the approximate value function is almost trivial to compute

 Rather than performing d multiplications and additions, one simply
computes the indices of the 𝑛 ≪ 𝑑 active features and then adds up
the n corresponding components of the weight vector

U Kang

Tile Coding

 In choosing a tiling strategy, one has to pick the number of the tilings and the
shape of the tiles which determine the resolution and the generalization,
respectively

 Square tiles will generalize roughly equally in each dimension
 Tiles that are elongated along one dimension, such as the stripe tilings, will

promote generalization along that dimension
 The tilings in the middle figure are also denser and thinner on the left,

promoting discrimination along the horizontal dimension at lower values along
that dimension

 The diagonal stripe tiling will promote generalization along one diagonal. In
higher dimensions, axis-aligned stripes correspond to ignoring some of the
dimensions in some of the tilings, that is, to hyperplanar slices

 Irregular tilings are also possible, though rare in practice and beyond the
standard software

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Radial Basis Functions

 Radial basis functions (RBFs) are the natural generalization of coarse
coding to continuous valued features

 Rather than each feature being either 0 or 1, it can be anything in the
interval [0, 1], reflecting various degrees to which the feature is
present

 A typical RBF feature, 𝑥𝑖, has a Gaussian (bell-shaped) response 𝑥𝑖(𝑠)
dependent only on the distance between the state, 𝑠, and the feature’s
prototypical or center state 𝑐𝑖, and relative to the feature’s width 𝜎𝑖

𝑥𝑖 𝑠 = exp −
𝑠 − 𝑐𝑖

2

2𝜎𝑖
2

 E.g., 1-D RBF with a Euclidean distance metric (L2 norm)

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Radial Basis Functions

 The primary advantage of RBFs over binary features is that they
produce approximate functions that vary smoothly and are
differentiable

 Although this is appealing, in most cases it has no practical significance
(substantial additional computation without performance gain)

 RBF network is a linear FA using RBFs for its features
 In addition, some learning methods for RBF networks change the

centers and widths of the features as well, bringing them into the
realm of nonlinear FA

 Nonlinear methods may fit target functions much more precisely
 The downside to RBF networks, and to nonlinear RBF networks

especially, is greater computational complexity and, often, more
manual tuning (of centers and widths) before learning is robust and
efficient

U Kang

Outline

Value-function Approximation
The Prediction Objective (𝑉𝐸)
Stochastic-gradient and Semi-gradient Methods
Linear Methods
Feature Construction for Linear Methods
Selecting Step-Size Parameters Manually
Nonlinear Function Approximation: Neural Networks
Least-Squares TD
Memory-based Function Approximation
Kernel-based Function Approximation
Looking Deeper at On-policy Learning: Interest and Emphasis
Conclusion

U Kang

Selecting Step-Size Parameters
Manually

 Most SGD methods require the designer to select an appropriate step-
size parameter 𝛼

 Ideally this selection would be automated, and in some cases it has
been, but for most cases it is still common practice to set it manually

 To do this, and to better understand the algorithms, it is useful to
develop some intuitive sense of the role of the step-size parameter

 Can we say in general how it should be set?

U Kang

Selecting Step-Size Parameters
Manually

Step
size

U Kang

Selecting Step-Size Parameters
Manually

 Theoretical considerations are unfortunately of little help
 The theory of stochastic approximation gives us conditions on a slowly

decreasing step-size sequence that are sufficient to guarantee
convergence, but these tend to result in learning that is too slow.

 The classical choice 𝛼𝑡 = 1/𝑡, which produces sample averages in
tabular MC methods, is not appropriate for TD methods, for
nonstationary problems, or for any method using FA

 For linear methods, there are recursive least-squares methods, and
these methods can be extended to TD learning as in the LSTD method,
but these require 𝑂(𝑑2) step-size parameters, or d times more
parameters than we are learning

 For this reason we rule them out for use on large problems where FA is
most needed

U Kang

Selecting Step-Size Parameters
Manually

 To get some intuitive feel for how to set the step-size parameter
manually, it is best to go back momentarily to the tabular case

 There we can understand that a step size of 𝛼 = 1 will result in a
complete elimination of the sample error after one target
𝑁𝑒𝑤𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 ← 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒 + 𝑆𝑡𝑒𝑝𝑆𝑖𝑧𝑒 𝑇𝑎𝑟𝑔𝑒𝑡 − 𝑂𝑙𝑑𝐸𝑠𝑡𝑖𝑚𝑎𝑡𝑒

 We usually want to learn slower than this

 In the tabular case, a step size of 𝛼 =
1

10
would take about 10

experiences to converge approximately to their mean target, and if we
wanted to learn in 100 experiences we would use 𝛼 =

1

100

 In general, if 𝛼 =
1

𝜏
, then the tabular estimate for a state will approach

the mean of its targets, with the most recent targets having the
greatest effect, after about 𝜏 experiences with the state

U Kang

Selecting Step-Size Parameters
Manually

 With general FA there is not such a clear notion of number of
experiences with a state, as each state may be similar to and dissimilar
from all the others to various degrees

 However, there is a similar rule that gives similar behavior in the case
of linear FA

 Suppose you wanted to learn in about 𝜏 experiences with substantially
the same feature vector

 A good rule of thumb for setting the step-size parameter of linear SGD
methods is then 𝛼 = 𝜏𝔼 𝑥𝑇𝑥 −1

 Note the linear SGD update rule
𝑤𝑡+1 = 𝑤𝑡 + 𝛼 𝑈𝑡 − ො𝜐 𝑆𝑡 , 𝑤𝑡 𝑥 𝑆𝑡

 where x is a random feature vector chosen from the same distribution
as input vectors in the SGD. This method works best if the feature
vectors do not vary greatly in length; ideally 𝑥𝑇𝑥 is a constant

U Kang

Outline

Value-function Approximation
The Prediction Objective (𝑉𝐸)
Stochastic-gradient and Semi-gradient Methods
Linear Methods
Feature Construction for Linear Methods
Selecting Step-Size Parameters Manually
Nonlinear Function Approximation: Neural Networks
Least-Squares TD
Memory-based Function Approximation
Kernel-based Function Approximation
Looking Deeper at On-policy Learning: Interest and Emphasis
Conclusion

U Kang

Nonlinear FA: Artificial Neural
Networks

 Artificial neural networks (ANNs) are widely used for nonlinear FA

 An ANN is a network of interconnected units that have some of the
properties of neurons, the main components of nervous systems

 ANNs have a long history, with the latest advances in training deeply-
layered ANNs (deep learning) being responsible for some of the most
impressive abilities of machine learning systems, including RL systems

U Kang

Nonlinear FA: Artificial Neural
Networks

 A generic feedforward ANN with 4 input units, two output units, and
two hidden layers

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Nonlinear FA: Artificial Neural
Networks

 Deep convolutional network

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

Value-function Approximation
The Prediction Objective (𝑉𝐸)
Stochastic-gradient and Semi-gradient Methods
Linear Methods
Feature Construction for Linear Methods
Selecting Step-Size Parameters Manually
Nonlinear Function Approximation: Neural Networks
Least-Squares TD
Memory-based Function Approximation
Kernel-based Function Approximation
Looking Deeper at On-policy Learning: Interest and Emphasis
Conclusion

U Kang

Least-Squares TD

 All the methods we have discussed so far in this chapter have required
computation per time step proportional to the number of parameters

 With more computation, however, one can do better
 We discuss a method for linear FA that is arguably the best that can be

done for this case
 As discussed, TD(0) with linear FA converges asymptotically (for

appropriately decreasing step sizes) to the TD fixed point
𝑤𝑇𝐷 = 𝐴−1𝑏

 where
𝐴 = 𝔼 𝑥𝑡 𝑥𝑡 − 𝛾𝑥𝑡+1

𝑇 𝑎𝑛𝑑 𝑏 = 𝔼[𝑅𝑡+1𝑥𝑡]

 Can we compute A and b this directly, not iteratively, and thus get the
TD fixed point?
 Yes! The answer is Least-squares TD (LSTD)

U Kang

Least-Squares TD

 LSTD forms the natural estimates

መ𝐴𝑡 =

𝑘=0

𝑡−1

𝑥𝑘 𝑥𝑘 − 𝛾𝑥𝑘+1
𝑇 + 𝜀𝐼 𝑎𝑛𝑑 𝑏𝑡 =

𝑘=0

𝑡−1

𝑅𝑘+1𝑥𝑘

 where 𝐼 is the identity matrix, and 𝜖𝐼, for some small 𝜖 > 0, ensures
that መ𝐴𝑡 is always invertible
 A strictly diagonally dominant matrix is invertible
 https://en.wikipedia.org/wiki/Diagonally_dominant_matrix

 Note that 1/t is not written since it is canceled out
𝑤𝑡 = መ𝐴𝑡

−1 𝑏𝑡
 This algorithm is the most data efficient form of linear TD(0), but it is

also more expensive computationally. Recall that semi-gradient TD(0)
requires memory and per-step computation that is only O(d)

U Kang

Least-Squares TD

 How complex is LSTD? As it is written above the complexity seems to
increase with t, but the two approximations (መ𝐴𝑡 and 𝑏𝑡) could be
implemented incrementally so that they can be done quickly per step

 Even so, the update for መ𝐴𝑡 would involve an outer product (a column
vector times a row vector) and thus would be a matrix update; its
computational complexity would be 𝑂(𝑑2), and of course the memory
required to hold the መ𝐴𝑡 matrix would be 𝑂(𝑑2)

U Kang

Least-Squares TD

 A potentially greater problem is that our final computation 𝑤𝑡 = መ𝐴𝑡
−1 𝑏𝑡

uses the inverse of መ𝐴𝑡, and the computational complexity of a general
inverse computation is 𝑂(𝑑3)

 Fortunately, an inverse of a matrix of our special form—a sum of outer
products—can also be updated incrementally with only 𝑂(𝑑2)
computations (Sherman-Morrison formula)

መ𝐴𝑡
−1 = መ𝐴𝑡−1 + 𝑥𝑡 𝑥𝑡 − 𝛾𝑥𝑡+1

𝑇 −1

= መ𝐴𝑡−1
−1 −

መ𝐴𝑡−1
−1 𝑥𝑡 𝑥𝑡 − 𝛾𝑥𝑡+1

𝑇 መ𝐴𝑡−1
−1

1 + 𝑥𝑡 − 𝛾𝑥𝑡+1
𝑇 መ𝐴𝑡−1

−1 𝑥𝑡

 for t > 0, with መ𝐴0 = 𝜖𝐼

 It involves only vector-matrix and vector-vector multiplications and
thus is only 𝑂(𝑑2)

U Kang

Least-Squares TD
Sutton and Barto,

Reinforcement

Learning, 2018

መ𝐴𝑡
−1 = መ𝐴𝑡−1 + 𝑥𝑡 𝑥𝑡 − 𝛾𝑥𝑡+1

𝑇 −1

= መ𝐴𝑡−1
−1 −

መ𝐴𝑡−1
−1 𝑥𝑡 𝑥𝑡 − 𝛾𝑥𝑡+1

𝑇 መ𝐴𝑡−1
−1

1 + 𝑥𝑡 − 𝛾𝑥𝑡+1
𝑇 መ𝐴𝑡−1

−1 𝑥𝑡

U Kang

Least-Squares TD

 Of course, 𝑂(𝑑2) is still significantly more expensive than the 𝑂(𝑑) of semi-
gradient TD

 Whether the greater data efficiency of LSTD is worth this computational
expense depends on how large d is, how important it is to learn quickly, and
the expense of other parts of the system

 LSTD does not require a step size, but it does requires 𝜖; if 𝜖 is chosen too small
the sequence of inverses can vary wildly, and if 𝜖 is chosen too large then
learning is slowed

 In addition, LSTD’s lack of a step-size parameter means that it never forgets.
This is sometimes desirable, but it is problematic if the target policy 𝜋 changes
as it does in RL and GPI

 In control applications, LSTD typically has to be combined with some other
mechanism to induce forgetting

U Kang

Outline

Value-function Approximation
The Prediction Objective (𝑉𝐸)
Stochastic-gradient and Semi-gradient Methods
Linear Methods
Feature Construction for Linear Methods
Selecting Step-Size Parameters Manually
Nonlinear Function Approximation: Neural Networks
Least-Squares TD
Memory-based Function Approximation
Kernel-based Function Approximation
Looking Deeper at On-policy Learning: Interest and Emphasis
Conclusion

U Kang

Memory-based FA

 So far we have discussed the parametric approach to approximating
value functions. In this approach, a learning algorithm adjusts the
parameters of a functional form intended to approximate the value
function over a problem’s entire state space

 Each update, 𝑠 → 𝑔, is a training example used by the learning
algorithm to change the parameters with the aim of reducing the
approximation error

 After the update, the training example can be discarded (although it
might be saved to be used again)

 When an approximate value of a state (which we will call the query
state) is needed, the function is simply evaluated at that state using the
latest parameters produced by the learning algorithm

U Kang

Memory-based FA

 Memory-based FA methods are very different. They simply save training
examples in memory as they arrive (or at least save a subset of the examples)
without updating any parameters

 Whenever a query state’s value estimate is needed, a set of examples is
retrieved from memory and used to compute a value estimate for the query
state

 This approach is sometimes called lazy learning because processing training
examples is postponed until the system is queried to provide an output

 Memory-based FA methods are prime examples of nonparametric methods.
Unlike parametric methods, the approximating function’s form is not limited to
a fixed parameterized class of functions, such as linear functions or
polynomials, but is instead determined by the training examples themselves,
together with some means for combining them to output estimated values for
query states

 As more training examples accumulate in memory, one expects nonparametric
methods to produce increasingly accurate approximations of any target
function

U Kang

Memory-based FA

 There are many different memory-based methods depending on how
the stored training examples are selected and how they are used to
respond to a query

 We focus on local-learning methods that approximate a value function
only locally in the neighborhood of the current query state

 These methods retrieve a set of training examples from memory
whose states are judged to be the most relevant to the query state,
where relevance usually depends on the distance between states: the
closer a training example’s state is to the query state, the more
relevant it is considered to be, where distance can be defined in many
different ways

 After the query state is given a value, the local approximation is
discarded

U Kang

Memory-based FA

 The simplest example of the memory-based approach is the nearest
neighbor method, which simply finds the example in memory whose
state is closest to the query state and returns that example’s value as
the approximate value of the query state

 Slightly more complicated are weighted average methods that retrieve
a set of nearest neighbor examples and return a weighted average of
their target values, where the weights generally decrease with
increasing distance between their states and the query state

U Kang

Memory-based FA

 Locally weighted regression is similar, but it fits a surface to the values
of a set of nearest states by means of a parametric approximation
method that minimizes a weighted error measure, where the weights
depend on distances from the query state
 In typical linear regression, we find 𝜃 to minimize σ𝑖=1

𝑚 (𝑦 𝑖 − 𝜃𝑇𝑥(𝑖))2; then
we output 𝜃𝑇𝑥 for a given query point 𝑥

 In locally weighted regression, we instead find 𝜃 to minimize
σ𝑖=1
𝑘 𝑤(𝑖)(𝑦 𝑖 − 𝜃𝑇 𝑥(𝑖))2 where 𝑥(𝑖) for i=1…k are the k nearest neighbors

of a query point x; 𝑤(𝑖) is the weight given to the i-th nearest neighbor, e.g.,
𝑤 𝑖 (𝑥 𝑖) = exp(−

(𝑥 𝑖 −𝑥)2

2𝜏2
)

 The value returned is the evaluation of the locally-fitted surface at the
query state, after which the local approximation surface is discarded

U Kang

Memory-based FA

 Being nonparametric, memory-based methods have the advantage
over parametric methods of not limiting approximations to pre-
specified functional forms

 This allows accuracy to improve as more data accumulates
 Memory-based local approximation methods have other properties

that make them well suited for RL
 Because trajectory sampling is of such importance in RL, memory-

based local methods can focus FA on local neighborhoods of states (or
state–action pairs) visited in real or simulated trajectories

 There may be no need for global approximation because many areas of
the state space will never (or almost never) be reached

 In addition, memory-based methods allow an agent’s experience to
have a relatively immediate affect on value estimates in the
neighborhood of the current state, unlike parametric methods which
incrementally adjust parameters of a global approximation

U Kang

Memory-based FA

 Avoiding global approximation is also a way to address the curse of
dimensionality

 For example, for a state space with k dimensions, a tabular method
storing a global approximation requires memory exponential in k

 On the other hand, in storing examples for a memory-based method,
each example requires memory proportional to k, and the memory
required to store, say, n examples is linear in n

 Of course, the critical remaining issue is whether a memory-based
method can answer queries quickly enough to be useful to an agent

 A related concern is how speed degrades as the size of the memory
grows; finding nearest neighbors in a large database can take too long
to be practical in many applications

U Kang

Memory-based FA

 Speeding up nearest neighbor search
 Using parallel computers or special purpose hardware
 Using special multi-dimensional data structures to store the training data;

e.g., k-d tree which recursively splits a k-dimensional space into regions
arranged as nodes of a binary tree

 Speeding up locally weighted regression
 Forgetting entries in order to keep the size of the database within bounds

U Kang

Outline

Value-function Approximation
The Prediction Objective (𝑉𝐸)
Stochastic-gradient and Semi-gradient Methods
Linear Methods
Feature Construction for Linear Methods
Selecting Step-Size Parameters Manually
Nonlinear Function Approximation: Neural Networks
Least-Squares TD
Memory-based Function Approximation
Kernel-based Function Approximation
Looking Deeper at On-policy Learning: Interest and Emphasis
Conclusion

U Kang

Kernel-based FA

 Memory-based methods such as the weighted average and locally
weighted regression methods described above depend on assigning
weights to examples 𝑠′ → 𝑔 in the database depending on the distance
between 𝑠′ and a query states 𝑠

 The function that assigns these weights is called a kernel (function)
 In the weighted average and locally weighted regressions methods, for

example, a kernel function assigns weights to distances between states
 More generally, weights do not have to depend on distances; they can

depend on some other measure of similarity between states
 In this case, 𝑘: 𝑆 × 𝑆 → 𝑅, so that 𝑘(𝑠, 𝑠′) is the weight given to data

about 𝑠’ in its influence on answering queries about 𝑠
 Viewed slightly differently, 𝑘(𝑠, 𝑠′) is a measure of the strength of

generalization from 𝑠’ to 𝑠
 Kernel functions numerically express how relevant knowledge about

any state is to any other state

U Kang

Kernel-based FA

 Kernel regression is the memory-based method that computes a kernel
weighted average of the targets of all examples stored in memory,
assigning the result to the query state

 If D is the set of stored examples, and 𝑔(𝑠’) denotes the target function
for state 𝑠’ in a stored example, then kernel regression approximates
the target function, in this case a value function depending on D, as

ො𝜐 𝑠, 𝒟 =

𝑠′∈𝒟

𝑘 𝑠, 𝑠′ 𝑔(𝑠′)

 The weighted average method is a special case in which 𝑘(𝑠, 𝑠′) is non-
zero only when 𝑠 and 𝑠’ are close to one another so that the sum need
not be computed over all of D

U Kang

Kernel-based FA

 A common kernel is the Gaussian radial basis functions (RBFs) used in
FA

 When used in parametric FA, RBFs are features which express the
weight between a state and a center

𝑥𝑖 𝑠 = exp(−
𝑠 − 𝑐𝑖

2

2𝜎𝑖
2)

 Those centers and widths are either fixed from the start, with centers
presumably concentrated in areas where many examples are expected to
fall, or are adjusted in some way during learning

 Barring methods that adjust centers and widths, this is a linear parametric
method whose parameters are the weights of each RBF, which are typically
learned by stochastic gradient, or semi-gradient, descent

 The form of the approximation is a linear combination of the pre-
determined RBFs

U Kang

Kernel-based FA

 Kernel regression with a RBF kernel differs from the parametric
method in two ways
 1) It is memory-based: the RBFs are centered on the states of the stored

examples
 2) It is nonparametric: there are no parameters to learn

U Kang

Outline

Value-function Approximation
The Prediction Objective (𝑉𝐸)
Stochastic-gradient and Semi-gradient Methods
Linear Methods
Feature Construction for Linear Methods
Selecting Step-Size Parameters Manually
Nonlinear Function Approximation: Neural Networks
Least-Squares TD
Memory-based Function Approximation
Kernel-based Function Approximation
Looking Deeper at On-policy Learning: Interest and Emphasis
Conclusion

U Kang

Looking Deeper at On-policy
Learning: Interest and Emphasis

 The algorithms we have considered so have treated all the states
encountered equally, as if they were all equally important

 In some cases, we are more interested in some states than others
 In discounted episodic problems, we may be more interested in

accurately valuing early states in the episode than in later states where
discounting may have made the rewards much less important to the
value of the start state

 Or, if an action-value function is being learned, it may be less
important to accurately value poor actions whose value is much less
than the greedy action

 FA resources are always limited, and if they were used in a more
targeted way, then performance could be improved

U Kang

Looking Deeper at On-policy
Learning: Interest and Emphasis

 New concepts: interest and emphasis

 Interest
 A non-negative scalar measure, a random variable 𝐼𝑡, called interest

indicates the degree to which we are interested in accurately valuing the
state (or state–action pair) at time t

 If we don’t care at all about the state, then the interest should be 0; if we
fully care, it might be 1, though it is formally allowed to take any non-
negative value

 The interest can be set in any causal way; for example, it may depend on the
trajectory up to time t or the learned parameters at time t. The distribution
𝜇 in the 𝑉𝐸 is then defined as the distribution of states encountered while
following the target policy, weighted by the interest

U Kang

Looking Deeper at On-policy
Learning: Interest and Emphasis

 Emphasis
 A non-negative scalar random variable 𝑀𝑡, called emphasis, multiplies the

learning update and thus emphasizes or de-emphasizes the learning done
at time t

 The general n-step learning rule using emphasis is
𝑤𝑡+𝑛 = 𝑤𝑡+𝑛−1 + 𝛼𝑀𝑡 𝐺𝑡:𝑡+𝑛 − ො𝜐 𝑆𝑡, 𝑤𝑡+𝑛−1 𝛻ො𝜐 𝑆𝑡, 𝑤𝑡+𝑛−1 , 0 ≤ 𝑡 ≤ 𝑇

 with the n-step return given and the emphasis determined recursively from
the interest by

𝑀𝑡 = 𝐼𝑡 + 𝛾𝑛𝑀𝑡−𝑛, 0 ≤ 𝑡 ≤ 𝑇

 with 𝑀𝑡 = 0 for all 𝑡 < 0

 These equations are taken to include the MC case, for which 𝐺𝑡:𝑡+𝑛 = 𝐺𝑡, all
the updates are made at end of the episode, 𝑛 = 𝑇 − 𝑡, and 𝑀𝑡 = 𝐼𝑡

U Kang

Example: Interest and Emphasis

 Consider a four-state Markov reward process
 Episodes start in the leftmost state, then transition one state to the

right, with a reward of +1, on each step until the terminal state is
reached

 The true value of the first state is thus 4, of the second state 3, and so
on as shown below each state

 These are the true values; the estimated values can only approximate
these because they are constrained by the parameterization. There are
two components to the parameter vector 𝑤 = (𝑤1, 𝑤2)

𝑇, and the
parameterization is as written inside each state

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Interest and Emphasis

 The estimated values of the first two states are given by 𝑤1 alone and
thus must be the same even though their true values are different

 Similarly, the estimated values of the third and fourth states are given
by 𝑤2 alone and must be the same even though their true values are
different

 Suppose that we are interested in accurately valuing only the leftmost
state; we assign it an interest of 1 while all the other states are
assigned an interest of 0, as indicated above the states

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Interest and Emphasis

 First consider applying gradient MC algorithms to this problem
 The algorithms that do not take into account interest and emphasis will

converge (for decreasing step sizes) to the parameter vector 𝑤∞ =
(3.5, 1.5), which gives the first state—the only one we are interested
in—a value of 3.5 (i.e., intermediate between the true values of the first
and second states)

 The methods presented that do use interest and emphasis, on the
other hand, will learn the value of the first state exactly correctly; 𝑤1

will converge to 4 while 𝑤2 will never be updated because the
emphasis is zero in all states except the leftmost state

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Interest and Emphasis

 Now consider applying two-step semi-gradient TD methods
 The methods without interest and emphasis will again converge to

𝑤∞ = (3.5, 1.5), while the methods with interest and emphasis
converge to 𝑤∞ = (4, 2)

 The latter produces the exactly correct values for the first state and for
the third state (which the first state bootstraps from) while never
making any updates corresponding to the second or fourth states

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

Value-function Approximation
The Prediction Objective (𝑉𝐸)
Stochastic-gradient and Semi-gradient Methods
Linear Methods
Feature Construction for Linear Methods
Selecting Step-Size Parameters Manually
Nonlinear Function Approximation: Neural Networks
Least-Squares TD
Memory-based Function Approximation
Kernel-based Function Approximation
Looking Deeper at On-policy Learning: Interest and Emphasis
Conclusion

U Kang

Conclusion

 RL systems must be capable of generalization if they are to be
applicable to AI or to large engineering applications

 To do this, supervised learning methods can be used simply by treating
each update as a training example

 We discussed supervised learning methods using parameterized FA,
where the policy is parameterized by a weight vector w

 Although the weight vector has many components, the state space is
much larger still, and we must settle for an approximate solution

 We defined the mean squared value error, 𝑉𝐸(𝑤), as a measure of the
error in the values 𝑣𝜋𝑤(𝑠) for a weight vector w under the on-policy
distribution 𝜇

 𝑉𝐸 gives us a clear way to rank different value-function approximations
in the on-policy case

U Kang

Conclusion

 To find a good weight vector, the most popular methods are variations
of stochastic gradient descent (SGD)

 We have focused on the on-policy case with a fixed policy, also known
as policy evaluation or prediction; a natural learning algorithm for this
case is n-step semi-gradient TD, which includes gradient MC and semi-
gradient TD(0) algorithms as the special cases when n=∞ and n=1
respectively

 Semi-gradient TD methods are not true gradient methods. In such
bootstrapping methods (including DP), the weight vector appears in
the update target, yet this is not taken into account in computing the
gradient—thus they are semi-gradient methods. As such, they cannot
rely on classical SGD results

U Kang

Conclusion

 Nevertheless, good results can be obtained for semi-gradient methods
in the special case of linear FA, where the value estimates are sums of
features times corresponding weights

 The linear case works well with appropriate features
 Choosing the features

 Polynomials: generalizes poorly in the online RL
 Fourier basis and coarse coding with sparse overlapping receptive fields are

widely used
 Tile coding is a form of coarse coding that is efficient and flexible
 Radial basis functions are useful for one- or two-dimensional tasks in which

a smoothly varying response is important.
 LSTD is the most data-efficient linear TD prediction method, but requires

computation proportional to the square of the number of weights, whereas
all the other methods are of complexity linear in the number of weights

 Nonlinear methods include ANN

U Kang

Exercise

 (Question 1)
 Suppose we have 2x2 grid-world example presented below. We have

four actions {𝑢𝑝, 𝑑𝑜𝑤𝑛, 𝑙𝑒𝑓𝑡, 𝑟𝑖𝑔ℎ𝑡} that we can take for each state.
Show gradient descent update steps of one-step 𝑆𝐴𝑅𝑆𝐴 for one
episode. We use linear FA with the following features.

 𝛼 = 0.1

 𝛾 = 0.9

 𝑊 = 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 𝑎𝑠 𝑎𝑙𝑙 𝑧𝑒𝑟𝑜𝑠

 𝐸𝑝𝑖𝑠𝑜𝑑𝑒 ∶ (𝑆1, 𝑑𝑜𝑤𝑛, 𝑆3, 𝑟𝑖𝑔ℎ𝑡, 𝑆4)

𝑆1 𝑆2 𝑆3 𝑆4
𝑢𝑝 0.1, 0.0, 0.0, 0.1 0.1, 0.1, 0.0, 0.0 0.0, 0.1, 0.0, 0.1 0.1, 0.1, 0.0, 0.1

𝑑𝑜𝑤𝑛 0.0, 0.2, 0.1, 0.0 0.0, 0.1, 0.1, 0.0 0.3, 0.1, 0.1, 0.0 0.1, 0.2, 0.1, 0.0

𝑙𝑒𝑓𝑡 0.0, 0.1, 0.1, 0.0 0.0, 0.1, 0.1, 0.0 0.0, 0.1, 0.1, 0.0 0.0, 0.1, 0.1, 0.0

𝑟𝑖𝑔ℎ𝑡 0.1, 0.0, 0.1, 0.1 0.1, 0.3, 0.0, 0.1 0.1, 0.3, 0.0, 0.1 0.1, 0.0, 0.2, 0.1

𝑆1 𝑆2, 𝑅 = 0

𝑆3, 𝑅 = 0 𝑆4, 𝑅 = 1

U Kang

Exercise

 (Hint)
 Remember the semi-gradient update equation

wt+1 = wt −
1

2
𝛼𝛻 𝜐𝜋 St − ො𝜐 St, wt

2

= wt + 𝛼[𝑅𝑡+1 + 𝛾 ො𝑣(𝑆𝑡+1, wt) − ො𝜐 St, wt]𝛻ො𝜐(St, wt)

U Kang

Exercise

 (Answer)
 𝐴𝑡 𝑆1: 𝑠𝑒𝑙𝑒𝑐𝑡 𝑎𝑐𝑡𝑖𝑜𝑛 𝑑𝑜𝑤𝑛, 𝑛𝑒𝑥𝑡 𝑠𝑡𝑎𝑡𝑒 𝑆3 𝑤𝑖𝑡ℎ 𝑅 = 0

 𝑤𝑒 𝑘𝑛𝑜𝑤 𝑛𝑒𝑥𝑡 𝑎𝑐𝑡𝑖𝑜𝑛 𝑖𝑠 𝑟𝑖𝑔ℎ𝑡 𝑏𝑎𝑠𝑒𝑑 𝑜𝑛 𝑡𝑟𝑎𝑗𝑒𝑐𝑡𝑜𝑟𝑦.

 𝑆𝑜, 𝑤𝑖𝑡ℎ 𝑖𝑛𝑖𝑡𝑖𝑎𝑙𝑖𝑧𝑒𝑑 𝑤 = 0, 0, 0, 0 ,

 ො𝑞 𝑆, 𝐴, 𝑤 = 𝑤𝑇𝑥 𝑆1, 𝑑𝑜𝑤𝑛 = 0,0,0,0 𝑇 ∗ 0.0,0.2,0.1,0.0 = 0

 ො𝑞 𝑆′, 𝐴′, 𝑤 = 𝑤𝑇𝑥 𝑆3, 𝑟𝑖𝑔ℎ𝑡 = 0,0,0,0 𝑇 ∗ 0.1,0.3,0.0,0.1 = 0

 𝛻ො𝑞 𝑆, 𝐴, 𝑤 = 𝑥 𝑆1, 𝑑𝑜𝑤𝑛 = {0.0,0.2,0.1,0.0}

 𝑤 ← 0,0,0,0 + 0.1 0 + 0.9 ∗ 0 − 0 ∗ 0.0,0.2,0.1,0.0 = 0,0,0,0 +
0.0, 0.0,0.0,0.0 = 0.0, 0.0, 0.0, 0.0

𝑆1 𝑆2 𝑆3 𝑆4
𝑢𝑝 0.1, 0.0, 0.0, 0.1 0.1, 0.1, 0.0, 0.0 0.0, 0.1, 0.0, 0.1 0.1, 0.1, 0.0, 0.1

𝑑𝑜𝑤𝑛 0.0, 0.2, 0.1, 0.0 0.0, 0.1, 0.1, 0.0 0.3, 0.1, 0.1, 0.0 0.1, 0.2, 0.1, 0.0

𝑙𝑒𝑓𝑡 0.0, 0.1, 0.1, 0.0 0.0, 0.1, 0.1, 0.0 0.0, 0.1, 0.1, 0.0 0.0, 0.1, 0.1, 0.0

𝑟𝑖𝑔ℎ𝑡 0.1, 0.0, 0.1, 0.1 0.1, 0.3, 0.0, 0.1 0.1, 0.3, 0.0, 0.1 0.1, 0.0, 0.2, 0.1

𝑆1 𝑆2, 𝑅 = 0

𝑆3, 𝑅 = 0 𝑆4, 𝑅 = 1

wt+1 = wt + 𝛼[𝑅𝑡+1 + 𝛾 ො𝑣(𝑆𝑡+1, wt) − ො𝜐 St, wt]𝛻ො𝜐(St, wt)

U Kang

Exercise

 (Answer)
 𝑆𝑜, 𝑤𝑖𝑡ℎ 𝑤 𝑓𝑟𝑜𝑚 𝑎𝑏𝑜𝑣𝑒,

 ො𝑞 𝑆, 𝐴, 𝑤 = 𝑤𝑇𝑥 𝑆3, 𝑟𝑖𝑔ℎ𝑡 = 0,0,0,0 𝑇 ∗ 0.1,0.3,0.0,0.1 = 0

 𝛻ො𝑞 𝑆, 𝐴, 𝑤 = 𝑥 𝑆3, 𝑟𝑖𝑔ℎ𝑡 = {0.1,0.3,0.0,0.1}

 𝑤 ← 0.0, 0.0, 0.0, 0.0 + 0.1 1 + 0.9 ∗ 0 ∗ 0.1,0.3,0.0,0.1 =
{0.01,0.03,0.0,0.01}

𝑆1 𝑆2 𝑆3 𝑆4
𝑢𝑝 0.1, 0.0, 0.0, 0.1 0.1, 0.1, 0.0, 0.0 0.0, 0.1, 0.0, 0.1 0.1, 0.1, 0.0, 0.1

𝑑𝑜𝑤𝑛 0.0, 0.2, 0.1, 0.0 0.0, 0.1, 0.1, 0.0 0.3, 0.1, 0.1, 0.0 0.1, 0.2, 0.1, 0.0

𝑙𝑒𝑓𝑡 0.0, 0.1, 0.1, 0.0 0.0, 0.1, 0.1, 0.0 0.0, 0.1, 0.1, 0.0 0.0, 0.1, 0.1, 0.0

𝑟𝑖𝑔ℎ𝑡 0.1, 0.0, 0.1, 0.1 0.1, 0.3, 0.0, 0.1 0.1, 0.3, 0.0, 0.1 0.1, 0.0, 0.2, 0.1

𝑆1 𝑆2, 𝑅 = 0

𝑆3, 𝑅 = 0 𝑆4, 𝑅 = 1

wt+1 = wt + 𝛼[𝑅𝑡+1 + 𝛾 ො𝑣(𝑆𝑡+1, wt) − ො𝜐 St, wt]𝛻ො𝜐(St, wt)

U Kang

Questions?

