Nucleophilic reactions

Nucleophiles

Nucleophiles: nucleus-liking species

- Electron-rich
- Possesses negative charge or non-bonded valence electrons
- Large abundance of nucleophiles in the environment (water itself is a nucleophile)

Nucleophilic substitution

- Nucleophiles may form a bond with the electron-deficient atom in an organic molecule
- As a consequence of a new bond formation, another bond has to be broken

$$Nu: +R - L \Rightarrow R - Nu + L:$$

S_N2 & S_N1 mechanisms

Nucleophiles

Important nucleophiles in the environment

- High abundance of water (and OH⁻ for high pH)
- Water is usually the most significant among the environmental nucleophiles

Hydrolysis

A reaction in which a water molecule (or OHion) substitutes for another atom of group of atoms present in an organic molecule

Table 13.1 Examples of Important Environmenal Nucleophiles

^a Ph = C_6H_5 (phenyl)

 $^{^{}b}$ R = CH₃, C₂H₅

Nucleophilic reactions

 Examples of environmentally relevant chemical reactions involving nucleophiles and/or bases

Reactants		Products				
Nucle	ophilic Substitutions at S	aturated Carbon Atoms				
CH ₃ Br + H ₂ O		CH ₃ OH + H ⁺ + Br ⁻				
Methyl bromide		Methanol				
CH ₃ CI + HS ⁻		CH ₃ SH + CI -				
Methyl chloride		Methane thiol (Methyl mercaptan)				
O CH ₃ OP(OCH ₃) ₂ + H ₂ O		$CH_3OH + ^-O-P(OCH_3)_2 + H^+$				
Trimethylphosphate		Methanol Dimethylphosphate				

Reactants

Products

 β -Elimination

1,1,2,2-Tetrachloroethane

Trichloroethene

Ester Hydrolysis

Ethyl acetate

(Acetic acid ethylester)

Acetate

Ethanol

$$(C_2H_5O)_2P - O - NO_2 + HO^-$$

Parathion

O,O-Diethylthiophosphoric acid

4-Nitrophenol

Carbamate Hydrolysis

$$H_3$$
CNH $-C$ $-O$ $+$ H_2 O CH_3 CH_3

Carbofuran

Methylamine

2,3-Dihydro-3,3dimethyl-7-benzofuranol

• S_N2 mechanism

S_N2 mechanism

- The standard free energy of activation $\Delta^{\ddagger}G^{0}$ (which controls the reaction rate) depends strongly on both <u>the capability of the nucleophile to initiate a substitution reaction</u> and <u>the willingness of the organic molecule to undergo that reaction</u>
- Substitution, nucleophilic, bimolecular
- Follows a second-order kinetic rate law:

$$\frac{d[R_1R_2R_3C - L]}{dt} = -k[Nu^-][R_1R_2R_3C - L]$$

 $k = 2^{nd}$ order rate constant (L/mole-s)

• S_N1 mechanism

extent of reaction (reaction coordinate)

S_N1 mechanism

- The reaction rate depends solely on <u>how easily the leaving group dissociates</u> from the parent molecule
- The structure of the activated complex is assumed to be similar to the carboncation complex
- $-\Delta^{\dagger}G^{0}$ depends on the stability of the cation
- Substitution, nucleophilic, unimolecular
- Follows a first-order kinetic rate law:

$$\frac{d[R_1R_2R_3C - L]}{dt} = -k[R_1R_2R_3C - L]$$

k = 1st order rate constant (s⁻¹)

- Study of nucleophilic substitution of methyl halides for various nucleophiles:
 - A methyl halide has the same relative reactivity toward the different nucleophiles as the other methyl halides
 - Swain & Scott (1953):

$$\log\left(\frac{k_{Nu}}{k_{H_2O}}\right) = s \cdot n_{Nu,CH_3Br}$$

 k_{Nu} = 2nd-order rate const. for a nucleophile of interest k_{H_2O} = 2nd order rate const. for H_2O

 n_{Nu,CH_3Br} = a measure of the nucleophilicity of the nucleophile of interest, measured by the nucleophilic substitution reaction with CH_3Br in water

s = sensitivity of the organic molecule to nucleophilic attack

$$log\left(\frac{k_{Nu}}{k_{H_2O}}\right)$$

 $= s \cdot n_{Nu,CH_3Br}$

Table 13.3 Relative Nucleophilicities of Some Important Environmental Nucleophiles: n-Values Determined from the Reaction with Methyl Bromide or n-Hexyl Bromide in Water (Eq. 13-3, s = 1)

Nucleophile

$$n_{Nu,CH_3Br}$$
 a

 CIO4
 <0
 H_2O
 0

 NO3
 1.0

 F
 2.0

 SO_4^{2-}
 2.5

 CH_3COO^-
 2.7

 CI^-
 3.0

 HCO_3^- , HPO_4^{2-}
 3.8

 Br^-
 3.9

 OH^-
 4.2

 I^-
 5.0

 CN^- , HS^-
 5.1

 $S_2O_3^{2-}$
 6.1

 b
 6.8

 B_4^{2-}
 7.2

$$log\left(\frac{k_{Nu}}{k_{CH_3OH}}\right)$$
$$= s' \cdot n_{Nu,CH_3I}$$

Table 13.4 Relative Nucleophilicities of Some Important Environmental Nucleophiles: n-Values Determined From the Reaction with Methyl Iodide in Methanol (Eq. 13-4, s' = 1)

Nucleophile	$n_{\mathrm{Nu,CH_3I}}{}^a$	
CH ₃ OH	0	
NO ₃ -	~1.5	
F ⁻	~2.7	
SO ₄ ²⁻	3.5	
HCO ₃ ² ·, HPO ₄ ² -	3.8	
CH ₃ COO	4.4	
Cl	4.4	
Pyridine	5.2	
PhNH ₂	5.7	
PhO"	5.8	
Br^{-}, N_{3}^{-}	5.8	
CN ⁻	6.7	
$(C_2H_5)_2NH$	~7.0	
I_	7.4	
HS ⁻	~8	
$S_2O_3^{2-}$	8.9	
PhS-	9.9	

^a Data from Pearson et al. (1968).

^a Data from Hine (1962). ^b Data from Haag and Mill (1988a).

$$\frac{d[R_1R_2R_3C - L]}{dt} = -k[Nu][R_1R_2R_3C - L]$$

- Competition with hydrolysis:
 - Reaction rate of Nu depends on k & [Nu]

$$[Nu]_{50\%} = 55.3 \times 10^{-n_{Nu,CH_3Br}}$$

 $[Nu]_{50\%}$ = [Nu] to get the same rate as the hydrolysis rate by H₂O

- Freshwater vs. saline water
- pH sensitivity of hydrolysis reaction (H₂O vs. OH⁻)

Table 13.5 Calculated Concentration of Nucleophile Required to Compete with Water in an S_N2 Reaction with Alkyl Halides Assuming an s Value of 1

Nucleophile	$[\mathrm{Nu}]_{50\%}{}^a (\mathrm{M})$
NO ₃	~6
F-	$\sim 6 \times 10^{-1}$
SO ₄ ²⁻	$\sim 2 \times 10^{-1}$
Cl-	$\sim 6 \times 10^{-2}$
HCO ₃	$\sim 9 \times 10^{-3}$
HPO4	$\sim 9 \times 10^{-3}$
Br ⁻	$\sim 7 \times 10^{-3}$
OH-	$\sim 4 \times 10^{-3}$
I ⁻	$\sim 6 \times 10^{-4}$
HS-	$\sim 4 \times 10^{-4}$
CN	$\sim 4 \times 10^{-4}$
$S_2O_3^{2-}$	$\sim 4 \times 10^{-5}$
S ₄ 2-	~4 × 10 ⁻⁶

^a Eq. 13-5 using the $n_{\text{Nu,CH}_3\text{Br}}$ values given in Table 13.3.

Q: Estimate the half-life (in days) of CH_3Br present at low concentration (i.e., < 0.01mM) in a homogeneous aqueous solution (pH=7.0, T=25°C) containing 100 mM Cl^- , 2 mM NO_3^- , 1 mM HCO_3^- , and 0.1 mM CN^- . In pure water at pH 7.0 and 25°C, the half-life of CH_3Br is about 20 days.

S_N1 & S_N2: Leaving groups

- Reaction rates for methyl halides
 - Reaction rate in the order of: CH₃Br ~ CH₃I > CH₃CI > CH₃F
 - A plausible hypothesis: the weaker a nucleophile, the better leaving group it should be
 - But n_{Nu,CH_3Br} is in the order of: $F^- < Cl^- < Br^- < l^- \rightarrow$ hypothesis NOT supported
 - Why?? C-X bond strength is in the order of: $CH_3I < CH_3Br < CH_3CI < CH_3F$
- The likeliness of being a leaving group depends mainly on the <u>bond</u> <u>strength</u>

S_N1 & S_N2: Effect of EDGs & resonance

Table 13.6 Hydrolysis Half-Lives and Postulated Reaction Mechanisms at 25°C of Some Monohalogenated Hydrocarbons at Neutral pH ^a

	Type of Carbon	$t_{1/2}$ (Hydrolysis)			Dominant Mechanism(s)	
	to Which L is Attached	L = F	Cl	Br	I	in Nucleophilic Substitution Reactions
R-CH ₂ -L	primary	≈30 yr ^b	340 d ^b	20–40 d °	50-110 d ^d	S _N 2
H₃Ç ÇH−L H₃Ć	secondary		38 d	2 d	3 d	$S_{N}2S_{N}1$
CH ₃ H ₃ C——L CH ₃	tertiary	50 d	23 s			$S_N 1$
CH ₂ = CH- CH ₂ -L	allyl		69 d	0.5 d	2 d	$S_{N}2S_{N}1$
$ - \mathrm{CH_2-L}$	benzyl		15 h	0.4 h		$S_{N}2S_{N}1$

^a Data taken from Robertson (1969) and Mabey and Mill (1978). ^b R = H, ^c R = H, C_1 to C_5 -n-alkyl. ^d R = H, C_{13} .

Hydrolysis of carboxylic & carbonic acid derivatives

$$R_1$$
 C
 C
 R_2
 R_3
 R_3

ester (thioester)

 R_1
 R_2
 R_3

Carboxylic acid derivatives • Carbonic acid derivatives

- Unsaturated, electron-deficient C
- Reacts predominantly with H₂O & OH⁻ (hydrolysis)
- **General reaction mechanism**

$$R - C - L \longrightarrow R - C \longrightarrow$$

- Three mechanisms:
 - 1) acid-catalyzed
 - 2) neutral
 - 3) base-catalyzed
- Importance of each reaction depends on the structure of the reactant

Acid-catalyzed

- Ester carbon is protonated
 → enhanced depletion of electrons near the carbon
 → ester carbon gets more susceptible to H₂O attack
- Reaction (2) is rate limiting
- Reaction rate depends on:
 - k_A'
 - K_A of the protonated ester
 - [H⁺]

$$R_{1}-C = \begin{pmatrix} O \\ O-R_{2} \end{pmatrix} + H_{3}O^{+} = \begin{pmatrix} (fast) \\ (fast) \end{pmatrix} = \begin{pmatrix} OH \\ O-R_{2} \end{pmatrix} + H_{2}O = \begin{pmatrix} (fast) \\ (fast) \end{pmatrix} = \begin{pmatrix} OH \\ R_{1}-C-O-R_{2} \\ (fast) \end{pmatrix} + \begin{pmatrix} OH \\ R_{2} \\ (fast) \end{pmatrix} + \begin{pmatrix} OH \\ R_{2} \\ (fast) \end{pmatrix} + \begin{pmatrix} OH \\ R_{2} \\ (fast) \end{pmatrix} + \begin{pmatrix} OH \\ R_{1}-C-O-R_{2} \\ (fast) \\ (fast) \end{pmatrix} + \begin{pmatrix} OH \\ R_{1}-C-O-R_{2} \\ (fast) \\ (fast) \end{pmatrix} + \begin{pmatrix} OH \\ R_{1}-C-O-R_{2} \\ (fast) \\ (fast) \end{pmatrix} + \begin{pmatrix} OH \\ C-O-R_{2} \\ (fast) \\ (fast) \end{pmatrix} + \begin{pmatrix} OH \\ OH \\ OH \end{pmatrix} +$$

Base-catalyzed

Only (1) or both (1) & (2)can be rate-limiting

Rate depends on [OH⁻]
 and in addition:

$$R_{1} - CO + HO^{-} \frac{k_{B1} (slow)}{k_{B2} (fast)} \qquad R_{1} - CO - R_{2} \qquad (1)$$

$$R_{1} - CO - R_{2} \qquad \frac{k_{B3} (fast...slow)}{k_{B4} (slow)} \qquad R_{1} - CO + OOO - R_{2} \qquad (2)$$

$$R_{1} - CO + OOO - R_{2} \qquad \frac{(fast)}{(fast)} \qquad R_{1} - CO + HOOO - R_{2} \qquad (3)$$

If only (1) is rate-limiting:

• Depends on the formation of R₁-C-O-R₂

If both (1) & (2) are rate-limiting:

• Depends on the formation of $R_1 - C - C - C - R_2$ & the property of the leaving group

Neutral

- Similar to base-catalyzed
- The property of the leaving group is more important for H₂O (weaker nucleophile) than OH⁻

- Reaction kinetics
 - k_h : pseudo-first-order hydrolysis rate constant (s⁻¹), f(pH)

$$k_h = k_A[H^+] + k_{H_2O}[H_2O] + k_B[OH^-]$$

= $k_A[H^+] + k_N + k_B[OH^-]$

Hydrolysis half-life

$$t_{1/2 \, (hydroysis)} = \frac{\ln 2}{k_h}$$

Q: Determine the pseudo-first order hydrolysis rate constant, k_h , for the following reaction at pH 5.0 and 8.5 at 22.5°C using the data sets given in the next slide.

pH 5.0°, $T = 22.5$ °C		pH 8.5, $T = 22.5$ °C		
Time (min)	[DNPA (μ M)]	Time (min)	[DNPA (µM)]	
0	100.0	0	100.0	
11.0	97.1	4.9	88.1	
21.5	95.2	10.1	74.3	
33.1	90.6	15.4	63.6	
42.6	90.1	25.2	47.7	
51.4	88.5	30.2	41.2	
60.4	85.0	35.1	33.8	
68.9	83.6	44.0	26.6	
75.5	81.5	57.6	17.3	

^a Note that very similar results were also found at pH 4.0 and 22.5°C.

Q: For the previous question, derive the rate constants for the neutral (k_N) and base-catalyzed (k_B) hydrolysis of DNPA at 22.5°C. Note that the acid-catalyzed hydrolysis is relatively unimportant at pH>2. At what pH are the two reactions equally important?

