Nucleophilic reactions

Nucleophiles

Nucleophiles: species that like nucleus

- Can donate a pair of electrons to form a new covalent bond
- Electron-rich (e.g., negatively charged ions)
- Large abundance of nucleophiles in the environment (water itself is a nucleophile)

Nucleophilic substitution

- Nucleophiles may form a bond with the electron-deficient atom in an organic molecule
- As a consequence of a new bond formation, another bond has to be broken

$$Nu: +R - L \Rightarrow R - Nu + L:$$

S_N2 & S_N1 mechanisms

Nucleophiles

Important nucleophiles in the environment

- High abundance of water (and OH⁻ for high pH)
- Water is usually the most significant among the environmental nucleophiles

Hydrolysis

 A reaction in which a water molecule (or OHion) substitutes for another atom or group of atoms present in an organic molecule

Table 13.1 Examples of Important Environmenal Nucleophiles

ng nucleophilicity for 1 at a saturated carbon	C1O ₄ H ₂ O NO ₃ F SO ₄ , CH ₃ COO C1 HCO ₃ ,HPO ₃ ² NO ₅
increasing nucleophilicity for reaction at a saturated carbon	
	HCO ₃ ,HPO ₃ 2-
	NO ₂
	PhO ^{-a} , Br ⁻ , OH ⁻
	I , CN
	+ HS ⁻ ,R ₂ NH ^b
	S ₂ O ₃ ² -,SO ₃ ² -,PhS
a DL O	TT (-th1)

^a Ph = C_6H_5 (phenyl)

 $^{^{}b}$ R = CH₃, C₂H₅

Nucleophilic reactions

 Examples of environmentally relevant chemical reactions involving nucleophiles and/or bases

Reactants		Products			
Nucleo	Nucleophilic Substitutions at Saturated Carbon Atoms				
CH ₃ Br + H ₂ O		CH ₃ OH + H ⁺ + Br [−]			
Methyl bromide		Methanol			
CH ₃ CI + HS ⁻		CH ₃ SH + CI			
Methyl chloride		Methane thiol (Methyl mercaptan)			
O CH ₃ OP(OCH ₃) ₂ + H ₂ O		$O = 0$ $II = 0$ $CH_3OH + O-P(OCH_3)_2 + H^+$			
Trimethylphosphate		Methanol Dimethylphosphate			

Reactants

Products

 β -Elimination

1,1,2,2-Tetrachloroethane

Trichloroethene

Ester Hydrolysis

Ethyl acetate

(Acetic acid ethylester)

Acetate

Ethanol

$$C_2H_5O)_2P - O - O - O_2 + HO - (C_2H_5O)_2P - O + HO - O_3$$

Parathion

O,O-Diethylthiophosphoric acid

4-Nitrophenol

Carbamate Hydrolysis

$$H_3$$
CNH $-C$ $-O$ $+$ H_2 O CH_3 CH_3

Carbofuran

Methylamine

2,3-Dihydro-3,3dimethyl-7-benzofuranol

• S_N2 mechanism

S_N2 mechanism

- Substitution, nucleophilic, bimolecular
- The standard free energy of activation $\Delta^{\ddagger}G^{0}$ (which controls the reaction rate) depends strongly on both <u>the capability of the nucleophile to initiate a substitution reaction</u> and <u>the willingness of the organic molecule to undergo that reaction</u>
- Follows a second-order kinetic rate law:

$$\frac{d[R_1R_2R_3C - L]}{dt} = -k[Nu^-][R_1R_2R_3C - L]$$

 $k = 2^{nd}$ order rate constant (L/mole-s)

S_N1 mechanism

extent of reaction (reaction coordinate)

S_N1 mechanism

- Substitution, nucleophilic, unimolecular
- The reaction rate depends solely on <u>how easily the leaving group dissociates</u> from the parent molecule
- The structure of the activated complex is assumed to be similar to the carboncation complex
- $\Delta^{\dagger}G^{0}$ depends on the stability of the cation
- Follows a first-order kinetic rate law:

$$\frac{d[R_1R_2R_3C - L]}{dt} = -k[R_1R_2R_3C - L]$$

k = 1st order rate constant (s⁻¹)

S_N2: Relative nucleophilicity

- Study of nucleophilic substitution of methyl halides for various nucleophiles:
 - Methyl halides (CH₃X) have similar relative reactivity toward different nucleophiles
 - Swain & Scott (1953):

$$log\left(\frac{k_{Nu}}{k_{H_2O}}\right) = s \cdot n_{Nu,CH_3Br}$$

 k_{Nu} = 2nd-order rate const. for a nucleophile of interest k_{H_2O} = 2nd order rate const. for H_2O

 n_{Nu,CH_3Br} = a measure of the nucleophilicity of the nucleophile of interest

s = sensitivity of the organic molecule to nucleophilic attack

n_{Nu,CH_3Br} ---?

- Set CH₃Br as a reference compound to measure the nucleophilicity
- Set H₂O as a reference nucleophile
- By observing a nucleophilic substitution reaction between CH_3Br and Nu, n_{Nu,CH_3Br} can be determined:

$$n_{Nu,CH_{3}Br} = log \left[\frac{(k_{Nu})_{CH_{3}Br}}{(k_{H_{2}O})_{CH_{3}Br}} \right] * so, n_{H_{2}O,CH_{3}Br} = 0$$

We saw:

$$log\left(\frac{k_{Nu}}{k_{H_2O}}\right) \approx log\left[\frac{(k_{Nu})_{CH_3Br}}{\left(k_{H_2O}\right)_{CH_3Br}}\right] = n_{Nu,CH_3Br}$$

• But there is some error, so use "s" for modification

* s is not substantially different from 1

Table 13.3 Relative Nucleophilicities of Some Important Environmental Nucleophiles: n-Values Determined from the Reaction with Methyl Bromide or n-Hexyl Bromide in Water (Eq. 13-3, s = 1)

Nucleophile	$n_{ m Nu,CH_3Br}^{a}$
CIO ₄	<0
H_2O	0
NO ₃	1.0
F ⁻	2.0
SO ₄ ²	2.5
CH ₃ COO	2.7
Cl ⁻	3.0
HCO_3 , HPO_4^{2}	3.8
Br~	3.9
OH-	4.2
I -	5.0
CN", HS	5.1
$S_2O_3^{2-}$	6.1 ^b
PhS ⁻	6.8 ^b
S ₄ ²⁻	7.2 ^b

^a Data from Hine (1962). ^b Data from Haag and Mill (1988a).

S_N2: competition of nucleophiles

Competition with hydrolysis:

Reaction rate of Nu depends on k & [Nu]

$$\frac{d[R_1 R_2 R_3 C - L]}{dt} = -k[Nu][R_1 R_2 R_3 C - L]$$

- H₂O abundant ([H₂O]个), so a nucleophile should compete with hydrolysis
- For a reaction to have the same rate as hydrolysis:

$$[Nu]k_{Nu} = [H_2O]k_{H_2O}$$

assuming s=1,
$$k_{Nu} = k_{H_2O} \times 10^{n_{Nu,CH_3Br}}$$

$$[Nu]_{50\%} = 55.3 \times 10^{-n_{Nu,CH_3Br}}$$

 $[Nu]_{50\%}$ = [Nu] to get the same rate as the hydrolysis rate by H_2O

55.3 = molar concentration of water (M)

Table 13.5 Calculated Concentration of Nucleophile Required to Compete with Water in an S_N2 Reaction with Alkyl Halides Assuming an s Value of 1

Nucleophile	$[Nu]_{50\%}^a$ (M)
NO ₃	~6
F-	$\sim 6 \times 10^{-1}$
SO ₄ ²⁻	$\sim 2 \times 10^{-1}$
Cl-	$\sim 6 \times 10^{-2}$
HCO ₃	$\sim 9 \times 10^{-3}$
HPO4	$\sim 9 \times 10^{-3}$
Br ⁻	$\sim 7 \times 10^{-3}$
OH-	$\sim 4 \times 10^{-3}$
I ⁻	~6 × 10 ⁻⁴
HS-	$\sim 4 \times 10^{-4}$
CN	$\sim 4 \times 10^{-4}$
$S_2O_3^{2-}$	$\sim 4 \times 10^{-5}$
S42-	~4 × 10 ⁻⁶

^a Eq. 13-5 using the $n_{\text{Nu,CH}_3\text{Br}}$ values given in Table 13.3.

S_N2: competition of nucleophiles

Freshwater vs. saline water

- Freshwater [Cl⁻] ~ 10⁻⁴ M → Cl⁻ not a significant nucleophile
- Seawater [Cl⁻] ~ 0.5 M → Cl⁻ a significant nucleophile

pH sensitivity of hydrolysis reaction

- Low & neutral pH → OH⁻ not a significant nucleophile
- High pH (e.g., pH>11) → OH⁻ a significant nucleophile

Table 13.5 Calculated Concentration of Nucleophile Required to Compete with Water in an S_N2 Reaction with Alkyl Halides Assuming an s Value of 1

Nucleophile	$[Nu]_{50\%}^{a}(M)$
NO ₃	~6
F-	$\sim 6 \times 10^{-1}$
SO ₄ ²	$\sim 2 \times 10^{-1}$
Cl	$\sim 6 \times 10^{-2}$
HCO3	$\sim 9 \times 10^{-3}$
HPO4	$\sim 9 \times 10^{-3}$
Br-	$\sim 7 \times 10^{-3}$
OH-	$\sim 4 \times 10^{-3}$
I ⁻	$\sim 6 \times 10^{-4}$
HS-	$\sim 4 \times 10^{-4}$
CN	$\sim 4 \times 10^{-4}$
$S_2O_3^{2-}$	$\sim 4 \times 10^{-5}$
S42-	$\sim 4 \times 10^{-6}$

^a Eq. 13-5 using the $n_{\text{Nu,CH}_3\text{Br}}$ values given in Table 13.3.

S_N2: Relative nucleophilicity

Q: Estimate the half-life (in days) of CH_3Br present at low concentration (i.e., < 0.01mM) in a homogeneous aqueous solution (pH=7.0, T=25°C) containing 100 mM Cl^- , 2 mM NO_3^- , 1 mM HCO_3^- , and 0.1 mM CN^- . In pure water at pH 7.0 and 25°C, the half-life of CH_3Br is about 20 days.

S_N1 & S_N2: Leaving groups

- Reaction rates for methyl halides: CH₃Br ~ CH₃I > CH₃Cl > CH₃F
- What makes one a good leaving group??
 - 1) The one having smaller n_{Nu,CH_3Br} (a weaker nucleophile)

but
$$n_{Nu,CH_3Br}$$
 is in the order of:
 $F^- < Cl^- < Br < l^-$

2) The one bonded weakly to carbon

C-X bond strength is in the order of: $CH_3I < CH_3Br < CH_3CI < CH_3F$

More significant!

S_N1 & S_N2: Effect of EDGs & resonance

Table 13.6 Hydrolysis Half-Lives and Postulated Reaction Mechanisms at 25°C of Some Monohalogenated Hydrocarbons at Neutral pH ^a

	Type of Carbon	$t_{1/2}$ (Hydrolysis)			Dominant Mechanism(s)		
Compound	to Which L is Attached	L = F	Cl	Br	I	in Nucleophilic Substi- tution Reactions	
R-CH ₂ -L	primary	≈30 yr ^b	340 d ^b	20–40 d ^c	50-110 d ^d	S _N 2	
H₃C CH−L H₃C	secondary		38 d	2 d	3 d	$S_N 2 S_N 1$	
CH ₃ CH ₃	tertiary	50 d	23 s			$S_{N}1$	
CH ₂ =CH-CH ₂ -L	allyl		69 d	0.5 d	2 d	$S_N 2 S_N 1$	
— CH ₂ -L	benzyl		15 h	0.4 h		$S_N 2 S_N 1$	

^a Data taken from Robertson (1969) and Mabey and Mill (1978). ^b R = H. ^c R = H, C_1 to C_5 -n-alkyl. ^d R = H, CH_3 .

Hydrolysis of carboxylic & carbonic acid derivatives

- Carboxylic acid derivatives Carbonic acid derivatives

- Unsaturated, electron-deficient C
- Reacts predominantly with H₂O & OH⁻ (hydrolysis)
- **General reaction mechanism**

$$R = C + HL$$
 $R = C + HL$
 $R = C + HL$

Hydrolysis of Esters

- Three mechanisms:
 - 1) acid-catalyzed
 - 2) neutral
 - 3) base-catalyzed
- Importance of each reaction depends on the structure of the reactant

Ester hydrolysis: acid-catalyzed

- Ester carbon is protonated
 → enhanced depletion of electrons near the carbon
 → ester carbon gets more susceptible to H₂O attack
- Reaction (2) is rate limiting
- Reaction rate depends on:
 - $-k_A'$
 - K_a of the protonated ester
 - [H⁺]

$$R_{1} - C = \begin{pmatrix} O \\ O - R_{2} \end{pmatrix} + H_{3}O^{+} = \begin{pmatrix} (fast) \\ (fast) \end{pmatrix} = \begin{pmatrix} OH \\ R_{1} - C + \\ O - R_{2} \end{pmatrix} + H_{2}O = \begin{pmatrix} (fast) \\ (fast) \end{pmatrix} = \begin{pmatrix} OH \\ R_{1} - C - O - R_{2} \\ + OH_{2} \end{pmatrix} = \begin{pmatrix} OH \\ R_{1} - C - O - R_{2} \\ + OH_{2} \end{pmatrix} = \begin{pmatrix} (fast) \\ (fast) \end{pmatrix} = \begin{pmatrix} OH \\ R_{1} - C - O \\ - OH \\ - OH \end{pmatrix} = \begin{pmatrix} OH \\ R_{2} \end{pmatrix} = \begin{pmatrix} OH \\ (fast) \\ (fast) \end{pmatrix} = \begin{pmatrix} OH \\ R_{1} - C - O \\ - OH \\ - OH \end{pmatrix} = \begin{pmatrix} OH \\ R_{2} \end{pmatrix} = \begin{pmatrix} OH \\ (fast) \\ (fast) \end{pmatrix} = \begin{pmatrix} OH \\ R_{1} - C + OH \\ - OH \end{pmatrix} = \begin{pmatrix} OH \\ OH \end{pmatrix} = \begin{pmatrix} OH \\ (fast) \\ (fast) \end{pmatrix} = \begin{pmatrix} OH \\ OH \end{pmatrix} = \begin{pmatrix} OH \\$$

Ester hydrolysis: base-catalyzed

(1) only or both (1) & (2)
 can be rate-limiting

$$R_{1} - C = \frac{C}{O - R_{2}} + HO^{2} = \frac{k_{B1} (slow)}{k_{B2} (fast)} = \frac{C}{O - C} - C - R_{2}$$

$$R_{1} - C - C - R_{2} = \frac{k_{B3} (fast...slow)}{k_{B4} (slow)} = \frac{K_{1} - C}{O + C} + \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{1} - C = \frac{C}{O + C} + \frac{C}{O - C} + \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{1} - C = \frac{C}{O + C} + \frac{C}{O - C} + \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{1} - C = \frac{C}{O - C} + \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{1} - C = \frac{C}{O - C} + \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{1} - C = \frac{C}{O - C} + \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{1} - C = \frac{C}{O - C} + \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{1} - C = \frac{C}{O - C} + \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{1} - C = \frac{C}{O - C} + \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{2} - C = \frac{C}{O - C} + \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{1} - C = \frac{C}{O - C} + \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{2} - C = \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{1} - C = \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{2} - C = \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{1} - C = \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{2} - C = \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{1} - C = \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{2} - C = \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{1} - C = \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{2} - C = \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{1} - C = \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{2} - C = \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{1} - C = \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{2} - C = \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{2} - C = \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{3} - C = \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{4} - C = \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{3} - C = \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{4} - C = \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{4} - C = \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{4} - C = \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{4} - C = \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{5} - C = \frac{C}{O - C} + \frac{C}{O - C} + \frac{C}{O - C}$$

$$R_{5} - C = \frac{C}{O - C} + \frac{C}{O - C} +$$

 Rate depends on [OH⁻] and in addition:

If only (1) is rate-limiting:

– Depends on the formation of R₁ – C – O—R₂

If both (1) & (2) are rate-limiting:

— Depends on the formation of R₁-¢-o-R₂ & the property of the leaving group

Ester hydrolysis: neutral

- Similar to base-catalyzed
- The property of the leaving group is more important for H₂O (weaker nucleophile) than OH⁻

$$R_{1} - C = \begin{pmatrix} O \\ O - R_{2} \end{pmatrix} + H_{2}O = \begin{pmatrix} \frac{k_{N1} (slow)}{k_{N2} (fast)} \end{pmatrix} = \begin{pmatrix} O \\ R_{1} - C - O - R_{2} \\ - O - R_{2} \end{pmatrix} + \begin{pmatrix} O \\ - O - R_{2} \\ - O - R_{2} \end{pmatrix} = \begin{pmatrix} \frac{(fast)}{(fast)} \end{pmatrix} = \begin{pmatrix} O \\ R_{1} - C - O - R_{2} \\ - O - C - O - R_{2} \end{pmatrix} = \begin{pmatrix} O \\ - O - R_{2} \\ - O - O - R_{2} \end{pmatrix} = \begin{pmatrix} O \\ - O - C \\ - O - C - O - C \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \\ - O - C \\ - O - C \end{pmatrix} + \begin{pmatrix} O \\ - O - C \\ - O - C \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \\ - O - C \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \\ - O - C \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \\ - O - C \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \\ - O - C \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \\ - O - C \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \\ - O - C \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \\ - O - C \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \\ - O - C \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \\ - O - C \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \\ - O - C \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \\ - O - C \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \\ - O - C \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \\ - O - C \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \\ - O - C \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \\ - O - C \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \\ - O - C \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \end{pmatrix} = \begin{pmatrix} O \\ - O - C \end{pmatrix}$$

Ester hydrolysis kinetics

• k_h : pseudo-first-order hydrolysis rate constant (s⁻¹), f(pH)

$$k_h = k_A[H^+] + k_{H_2O}[H_2O] + k_B[OH^-]$$

= $k_A[H^+] + k_N + k_B[OH^-]$

Hydrolysis half-life (at certain pH)

$$t_{1/2 \,(hydroysis)} = \frac{\ln 2}{k_h}$$

Ester hydrolysis kinetics

I_I = the pH value at which the rates for I and J reactions are the same
I, J: A (acid-catalyzed); N (neutral); B (base-catalyzed)

Ester hydrolysis kinetics

Q: Following pseudo-first order hydrolysis rate constants, k_h , were determined by a laboratory kinetic experiment for DNPA at 25°C. Determine the rate constants for the neutral (k_N) and base-catalyzed (k_B) hydrolysis of DNPA. Determine the l_{NB} .

рН	3.0	4.0	5.0	8.5
k _h (s ⁻¹)	4.3 x 10 ⁻⁵	4.5 x 10 ⁻⁵	4.4 x 10 ⁻⁵	5.1 x 10 ⁻⁴