
U Kang

Reinforcement Learning

On-policy Control with
Approximation

U Kang
Seoul National University

U Kang

In This Lecture

 On-policy control with function approximation
 Episodic setting
 Continuous setting

U Kang

Overview

 Goal: on-policy control with parametric approximation of the action-
value function ො𝑞(𝑠, 𝑎, 𝑤) ≈ 𝑞∗(𝑠, 𝑎) where 𝑤 ∈ 𝑅𝑑 is a finite-dimensional
weight vector

 Semi-gradient Sarsa: the natural extension of semi-gradient TD(0) to
action values and to on-policy control

 We also introduce a new “average-reward” formulation of the control
problem, with new “differential” value functions

U Kang

Outline

Episodic Semi-gradient Control
Semi-gradient n-step Sarsa
Average Reward
Differential and Semi-gradient n-step Sarsa
Conclusion

U Kang

Episodic Semi-gradient Control

 Episodic semi-gradient one-step Sarsa
 Extension of the semi-gradient prediction methods to action values
 We consider the approximate action-value function ො𝑞 ≈ 𝑞𝜋, that is

represented as a functional form with weight vector w
 Whereas before we considered random training examples of the form 𝑆𝑡 →

𝑈𝑡, now we consider examples of the form 𝑆𝑡, 𝐴𝑡 → 𝑈𝑡
 The update target 𝑈𝑡 can be any approximation of 𝑞𝜋(𝑆𝑡 , 𝐴𝑡), including the

usual backed-up values such as the full MC return (𝐺𝑡) or any of the n-step
Sarsa returns

 The general gradient-descent update for action-value prediction is
𝑤𝑡+1 = 𝑤𝑡 + 𝛼 𝑈𝑡 − ො𝑞 𝑆𝑡 , 𝐴𝑡, 𝑤𝑡 𝛻ො𝑞(𝑆𝑡, 𝐴𝑡, 𝑤𝑡)

 E.g., the update for the one-step Sarsa is
𝑤𝑡+1 = 𝑤𝑡 + 𝛼 𝑅𝑡+1 + 𝛾ො𝑞 𝑆𝑡+1, 𝐴𝑡+1, 𝑤𝑡 − ො𝑞 𝑆𝑡 , 𝐴𝑡, 𝑤𝑡 𝛻ො𝑞(𝑆𝑡 , 𝐴𝑡, 𝑤𝑡)

 For a constant policy, this method converges in the same way that TD(0) does

U Kang

Episodic Semi-gradient Control

 To form control methods, we need to couple action-value prediction
methods with techniques for policy improvement and action selection

 Suitable techniques applicable to continuous actions, or to actions from
large discrete sets, are a topic of ongoing research

 If the action set is discrete and not too large, then we can use the
techniques discussed in previous chapters
 For each possible action 𝑎 available in the current state 𝑆𝑡, we can compute

ො𝑞(𝑆𝑡 , 𝑎, 𝑤𝑡) and then find the greedy action 𝐴𝑡∗ = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 ො𝑞(𝑆𝑡, 𝑎, 𝑤𝑡)

 Policy improvement is then done by changing the estimation policy to a soft
approximation of the greedy policy such as the 𝜖-greedy policy

 Actions are selected according to this same policy

U Kang

Episodic Semi-gradient Control

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Mountain Car

 Goal: driving an underpowered car up a steep mountain road
 The difficulty is that gravity is stronger than the car’s engine, and even

at full throttle the car cannot accelerate up the steep slope
 The only solution is to first move away from the goal and up the

opposite slope on the left. Then, by applying full throttle the car can
build up enough inertia to carry it up the steep slope even though it is
slowing down the whole way

 This is a simple example of a continuous control task where things
have to get worse in a sense (farther from the goal) before they can get
better

 Many control methodologies have great difficulties with tasks of this
kind unless explicitly aided by a human designer

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Mountain Car

 Reward: −1 on all time steps until the car moves past its goal position
at the top of the mountain, which ends the episode

 Actions: full throttle forward (+1), full throttle reverse (−1), and zero
throttle (0)

 The car moves according to a simplified physics. Its position 𝑥𝑡 and
velocity ሶ𝑥𝑡 are updated by

𝑥𝑡+1 ≐ 𝑏𝑜𝑢𝑛𝑑 𝑥𝑡 + ሶ𝑥𝑡+1

ሶ𝑥𝑡+1 ≐ 𝑏𝑜𝑢𝑛𝑑[ሶ𝑥𝑡 + 0.001𝐴𝑡 − 0.0025 cos 3𝑥𝑡]

 bound operation enforces −1.2 ≤ 𝑥𝑡 ≤ 0.5 and −0.07 ≤ ሶ𝑥𝑡+1 ≤ 0.07

 When 𝑥𝑡+1 reached the left bound, ሶ𝑥𝑡+1 was reset to zero. When it
reached the right bound, the goal was reached and the episode was
terminated

 Each episode started from a random position 𝑥𝑡 ∈ [−0.6, −0.4) and 0
velocity

U Kang

Example: Mountain Car

 To convert the two continuous state variables to binary features, we
used grid-tilings; we use 8 tilings, with each tile covering 1/8th of the
bounded distance in the dimension, and asymmetrical offsets as
described

 The feature vectors x(s, a) created by tile coding were then combined
linearly with the parameter vector to approximate the action-value
function:

ො𝑞 𝑠, 𝑎, 𝑤 ≐ 𝑤𝑇𝑥 𝑠, 𝑎 =

𝑖=1

𝑑

𝑤𝑖 ⋅ 𝑥𝑖(𝑠, 𝑎)

 for each pair of state s and action a

U Kang

Example: Mountain Car
z axis: -1 * (cost-to-go function)

𝑥𝑡 = 0𝑥𝑡 = −0.5

The optimistic initial action values encourage exploration

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: Mountain Car

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

Episodic Semi-gradient Control
Semi-gradient n-step Sarsa
Average Reward
Differential and Semi-gradient n-step Sarsa
Conclusion

U Kang

Semi-gradient n-step Sarsa

 We can obtain an n-step version of episodic semi-gradient Sarsa by
using an n-step return as the update target in the semi-gradient Sarsa
update equation

 The n-step return immediately generalizes from its tabular form to a
function approximation form
𝐺𝑡:𝑡+𝑛 ≐ 𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯+ 𝛾𝑛−1𝑅𝑡+𝑛 + 𝛾𝑛 ො𝑞 𝑆𝑡+𝑛, 𝐴𝑡+𝑛, 𝑤𝑡+𝑛−1 ,

𝑡 + 𝑛 < 𝑇

 with 𝐺𝑡:𝑡+𝑛 = 𝐺𝑡 if 𝑡 + 𝑛 ≥ 𝑇, as usual
 The n-step update equation is

𝑤𝑡+𝑛 ≐ 𝑤𝑡+𝑛−1 + 𝛼 𝐺𝑡:𝑡+𝑛 − ො𝑞 𝑆𝑡 , 𝐴𝑡, 𝑤𝑡+𝑛−1 𝛻ො𝑞 𝑆𝑡 , 𝐴𝑡, 𝑤𝑡+𝑛−1 ,
0 ≤ 𝑡 < 𝑇

U Kang

Semi-gradient n-step Sarsa

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Semi-gradient n-step Sarsa

 The performance is best if an intermediate level of bootstrapping is
used, corresponding to an n larger than 1

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

Episodic Semi-gradient Control
Semi-gradient n-step Sarsa
Average Reward
Differential and Semi-gradient n-step Sarsa
Conclusion

U Kang

Average Reward: A New Problem
Setting for Continuing Tasks

 We now introduce a third classical setting—alongside the episodic and
discounted settings—for formulating the goal in MDP

 Like the discounted setting, the average reward setting applies to
continuing problems where the interaction between agent and
environment goes on and on forever

 Unlike that setting, however, there is no discounting—the agent cares
just as much about delayed rewards as it does about immediate
reward

 Instead of discounting, we subtract the average reward from each
reward to avoid the return becoming too large

U Kang

Average Reward: A New Problem
Setting for Continuing Tasks

 In the average-reward setting, we define the average reward 𝑟(𝜋) of a
policy 𝜋 as follows:

𝑟 𝜋 ≐ lim
ℎ→∞

1

ℎ

𝑡=1

ℎ

𝔼 𝑅𝑡 𝑆0, 𝐴0:𝑡−1~𝜋

= lim
𝑡→∞

𝔼 𝑅𝑡 𝑆0, 𝐴0:𝑡−1~𝜋 ,

=

𝑠

𝜇𝜋 𝑠

𝑎

𝜋 𝑎 𝑠

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟

 where the expectations are conditioned on the initial state 𝑆0, and on
the subsequent actions, 𝐴0, 𝐴1, … , 𝐴𝑡−1, being taken according to 𝜋

 𝜇𝜋 is the steady-state distribution, 𝜇𝜋 𝑠 = 𝑙𝑖𝑚𝑡→∞Pr{𝑆𝑡 =
𝑠|𝐴0:𝑡−1~𝜋}, which is assumed to exist for any 𝜋 and to be
independent of 𝑆0 (ergodicity: in the long run the expectation of being
in a state depends only on the policy and the MDP transition prob.)

 Ergodicity guarantees the existence of the limits in the equations above

U Kang

Average Reward: A New Problem
Setting for Continuing Tasks

 In the average-reward setting, returns are defined in terms of
differences between rewards and the average reward:

𝐺𝑡 ≐ 𝑅𝑡+1 − 𝑟 𝜋 + 𝑅𝑡+2 − 𝑟 𝜋 + 𝑅𝑡+3 − 𝑟 𝜋 +⋯

 This is known as the differential return, and the corresponding value
functions are known as differential value functions which are defined in
the same way and we will use the same notation: 𝑣𝜋 𝑠 = 𝐸𝜋[𝐺𝑡|𝑆𝑡 =
𝑠] and 𝑞𝜋 𝑠, 𝑎 = 𝐸𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎] (similarly for 𝑣∗ and 𝑞∗)

U Kang

Average Reward: A New Problem
Setting for Continuing Tasks

 Differential value functions also have Bellman equations, just slightly
different from those we have seen earlier. We simply remove all 𝛾s and
replace all rewards by the difference between the reward and the true
average reward:

𝜐𝜋 𝑠 =

𝑎

𝜋(𝑎|𝑠)

𝑟,𝑠′

𝑝(𝑠′, 𝑟|𝑠, 𝑎) 𝑟 − 𝑟 𝜋 + 𝜐𝜋 𝑠′ ,

𝑞𝜋 𝑠, 𝑎 =

𝑟,𝑠′

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 − 𝑟 𝜋 +

𝑎′

𝜋 𝑎′ 𝑠′ 𝑞𝜋 𝑠′, 𝑎′

𝜐∗ 𝑠 = max
𝑎

𝑟,𝑠′

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 − max
𝜋

𝑟 𝜋 + 𝜐∗ 𝑠′ , 𝑎𝑛𝑑

𝑞∗ 𝑠, 𝑎 =

𝑟,𝑠′

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 − max
𝜋

𝑟 𝜋 + max
𝑎′

𝑞∗ 𝑠
′, 𝑎′

U Kang

Average Reward: A New Problem
Setting for Continuing Tasks

 There is also a differential form of the two TD errors:
𝛿𝑡 ≐ 𝑅𝑡+1 − ത𝑅𝑡 + ො𝜐 𝑆𝑡+1, 𝑤𝑡 − ො𝜐 𝑆𝑡 , 𝑤𝑡 ,

𝛿𝑡 ≐ 𝑅𝑡+1 − ത𝑅𝑡 + ො𝑞 𝑆𝑡+1, 𝐴𝑡+1, 𝑤𝑡 − ො𝑞(𝑆𝑡 , 𝐴𝑡 , 𝑤𝑡)

 where ത𝑅𝑡 is an estimate at time t of the average reward 𝑟(𝜋)
 With these alternate definitions, most of our algorithms and many

theoretical results carry through to the average-reward setting without
change

 E.g., the average reward version of semi-gradient Sarsa is defined
similarly, except with the differential version of the TD error

𝑤𝑡+1 ≐ 𝑤𝑡 + 𝛼𝛿𝑡𝛻ො𝑞 𝑆𝑡 , 𝐴𝑡 , 𝑤𝑡

U Kang

Average Reward: A New Problem
Setting for Continuing Tasks

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Example: An Access-Control
Queuing Task

 This is a decision task involving access control to a set of 10 servers
 Customers arrive at a single queue. If given access to a server, the

customers pay a reward of 1, 2, 4, or 8 to the server, depending on
their priority, with higher-priority customers paying more

 In each time step, the customer at the head of the queue is either
accepted (assigned to one of the servers) or rejected (removed from
the queue, with a reward of zero). In either case, on the next time step
the next customer in the queue is considered

 The queue never empties, and the priorities of the customers in the
queue are equally randomly distributed

 Each busy server becomes free with probability p = 0.06 on each time
step

 The task is to decide on each step whether to accept or reject the next
customer, on the basis of its priority and the number of free servers, so
as to maximize long-term reward without discounting

U Kang

Example: An Access-Control
Queuing Task

 The solution found by differential semi-gradient Sarsa

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

Episodic Semi-gradient Control
Semi-gradient n-step Sarsa
Average Reward
Differential and Semi-gradient n-step Sarsa
Conclusion

U Kang

Differential and Semi-gradient n-
step Sarsa

 In order to generalize to n-step bootstrapping, we need an n-step
version of the TD error

 We begin by generalizing the n-step return to its differential form, with
FA:
𝐺𝑡:𝑡+𝑛 ≐ 𝑅𝑡+1 − ത𝑅𝑡+𝑛−1 +⋯+ 𝑅𝑡+𝑛 − ത𝑅𝑡+𝑛−1 + ො𝑞(𝑆𝑡+𝑛, 𝐴𝑡+𝑛, 𝑤𝑡+𝑛−1)

 where ത𝑅 is an estimate of 𝑟(𝜋), 𝑛 ≥ 1, and 𝑡 + 𝑛 < 𝑇

 If 𝑡 + 𝑛 ≥ 𝑇, then we define 𝐺𝑡:𝑡+𝑛 = 𝐺𝑡
 The n-step TD error is then

𝛿𝑡 ≐ 𝐺𝑡:𝑡+𝑛 − ො𝑞(𝑆𝑡 , 𝐴𝑡 , 𝑤)

 after which we can apply our usual semi-gradient Sarsa update

U Kang

Differential and Semi-gradient n-
step Sarsa

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Outline

Episodic Semi-gradient Control
Semi-gradient n-step Sarsa
Average Reward
Differential and Semi-gradient n-step Sarsa
Conclusion

U Kang

Conclusion

 We have extended the ideas of parameterized FA and semi-gradient
descent to control

 The extension is immediate for the episodic case, using action values

 For the continuing case we introduce a whole new problem
formulation based on average reward

U Kang

Questions?

