Bioreactor analysis & design I

- Extended list of variables of interest with respect to reactor analysis & design
- Study on additional variables and analyses
 - Non-biodegradable VSS
 - (more in the next class)

CSTR, Monod: Master equations

Assumptions:

- Steady state
- $X_a = 0$ in the influent (negligible influent active biomass)

$$S = K \frac{1 + b\theta}{Y\hat{q}\theta - (1 + b\theta)}$$
$$X_a = Y \frac{S^0 - S}{1 + b\theta}$$

Bioreactor performance: Addt'l variables & analyses

- So far, we considered
 - Mass balance for S (of influent origin) and X_q only
 - S: soluble, biodegradable organics; X_a : active (living) biomass
- Although there should be
 - Particulate, biodegradable organics
 - influent origin, partially degraded in the reactor (rate slower than S)
 - contributes to effluent BOD, COD & VSS
 - Particulate, non-biodegradable organics
 - influent origin + generated in the reactor by cell decay
 - contributes to effluent COD & VSS (not BOD)
 - S of reactor origin
 - soluble, biodegradable organics produced by microorganisms
 - contributes to effluent BOD & COD

<Note> There should be soluble, non-biodegradable organics as well, but we can simply apply influent conc. = effluent conc.

Addt'l variables & analyses (cont'd)

- For reactor design & operation, we also need to know
 - Nutrient balance: are there any limitation/redundancy in the influent nutrient supply?
 - Nutrient limiting substrate utilization will not occur as predicted; external nutrient supply may be needed
 - Nutrient redundancy significant level of residual N & P in effluent can be a concern (e.g., algal bloom)
 - e⁻ acceptor balance: (usually for O₂) how much should be supplied to support substrate utilization?

Including non-biodegradable VSS

Recall:

$$\left(\frac{1}{X_a}\frac{dX_a}{dt}\right)_{inert} = -\frac{1}{X_a}\frac{dX_i}{dt} = -(1 - f_d)b$$

$$\stackrel{inert}{\longrightarrow} \frac{dX_i}{dt} = (1 - f_d)bX_a$$

Including nbVSS: mass balance

Steady-state mass balance for X_i:

$$0 = QX_i^0 - QX_i + (1 - f_d)bX_aV$$
$$\downarrow X_i = X_i^0 + (1 - f_d)bX_a\theta$$

Including nbVSS: solutions

Solution for nbVSS:
$$X_i = X_i^0 + X_a(1 - f_d)b\theta$$

Solution for total VSS:

$$X_{\nu} = X_i + X_a = X_i^{\ 0} + Y(S^0 - S) \frac{1 + (1 - f_d)b\theta}{1 + b\theta}$$