Reactors II

Today's class

- Plug flow reactor
- Concept
- PFR analysis for $1^{\text {st }}$ order reaction
- PFR analysis for Monod kinetics
- Continuous-stirred tank reactor
- CSTR analysis for $1^{\text {st }}$ order reaction
- PFR vs. CSTR
- CSTR analysis for Monod kinetics

Plug flow reactor

- Plug flow assumption: no mixing in the direction of flow \& completely mixed in the direction perpendicular to the flow
- Reactors get close to PFR as the length gets longer than the width and depth (e.g., rivers)

Reactor analysis: PFR, $1^{\text {st }}$ order

1) Schematics, CV \& assumption

We may take CV as a thin plate perpendicular to the flow at $z=z$ with a dimension of Δz in z dir.

Let $\quad \Delta V=$ volume of the $C V=A \Delta z$

$$
u_{z}=\text { flow velocity }=\frac{Q}{A}
$$

2) Set mass balance

$$
\begin{aligned}
& \frac{d M}{d t}=\Delta V \frac{d C}{d t}=Q C-Q(C+\Delta C)+(-k C \Delta V) \\
& \text { If } Q \neq f(t) \& C_{0} \neq f(t), \quad C(z) \neq f(t)
\end{aligned}
$$

So, we impose the steady-state assumption to the CV:

$$
\begin{aligned}
& 0=Q C-Q(C+\Delta C)+(-k C \Delta V) \\
& 0=-Q \Delta C-k C \Delta V
\end{aligned}
$$

3) Rearrange/solve

$$
\begin{aligned}
& 0=-Q \Delta C-k C \Delta V \\
& \frac{\Delta C}{\Delta V}=-\frac{k C}{Q}
\end{aligned}
$$

$$
\text { using } \quad \Delta V=A \Delta z \quad \& \quad Q=A u_{z} \text { : }
$$

$$
\frac{\Delta C}{\Delta z}=-\frac{k C}{u_{z}}
$$

$$
\text { let } \Delta z \rightarrow 0
$$

$$
\begin{aligned}
& \frac{d C}{d z}=-\frac{k C}{u_{z}} \\
& \frac{d C}{C}=-\frac{k}{u_{z}} d z
\end{aligned}
$$

$$
C_{e} / C_{0}=e^{-k \theta} \longrightarrow \begin{aligned}
& \text { Same form as the batch reactor } \\
& \text { (why??) }
\end{aligned}
$$

where, $\quad \theta \equiv \frac{V}{Q}=\frac{A \cdot L}{A \cdot u_{z}}=\frac{L}{u_{z}} \quad \begin{aligned} \boldsymbol{\theta} & =\text { hydraulic retention time, } H R T[T] \\ V & =\text { reactor volume }\left[L^{3}\right]\end{aligned}$

What the PFR assumption implies

- We model plug flow reactor as a movement of a "plug"
- The plug has a cross sectional area same as the reactor dimension and an infinitesimal dimension in z-dir (a thin plate)
- Complete mixing within the plug \rightarrow batch reactor moving in the direction of flow

Reactor analysis: PFR, Monod

Recall the batch reactor solution applying Monod kinetics:
$t=\frac{1}{\hat{q}}\left\{\left(\frac{K}{X_{a}^{0}+Y S^{0}}+\frac{1}{Y}\right) \ln \left(X_{a}{ }^{0}+Y S^{0}-Y S\right)-\left(\frac{K}{X_{a}^{0}+Y S^{0}}\right) \ln \frac{S X_{a}{ }^{0}}{S^{0}}-\frac{1}{Y} \ln X_{a}{ }^{0}\right\}$
[5.11]

With no doubt, we obtain the PFR solution as:
$\theta=\frac{1}{\hat{q}}\left\{\left(\frac{K}{X_{a}{ }^{0}+Y S^{0}}+\frac{1}{Y}\right) \ln \left(X_{a}{ }^{0}+Y S^{0}-Y S^{e}\right)-\left(\frac{K}{X_{a}{ }^{0}+Y S^{0}}\right) \ln \frac{S^{e} X_{a}{ }^{0}}{S^{0}}-\frac{1}{Y} \ln X_{a}{ }^{0}\right\}$
[5.27]

Reactor analysis: CSTR, $1^{\text {st }}$ order, steady state

1) Schematics, CV \& assumption
2) Set mass balance

$$
\frac{d C}{d t}=Q C_{0}-Q C-k C V
$$

3) Rearrange/solve

$$
\begin{aligned}
& 0=C_{0}-C-k C \theta \\
& C / C_{0}=\frac{1}{1+k \theta} \quad \text { where, } \theta \equiv \frac{V}{Q}
\end{aligned}
$$

PFR vs. CSTR

For $1^{\text {st }}$ order reaction,

CSTR (s-s):
$C=\frac{C_{0}}{1+k \theta}$
PFR:
$C=C_{0} e^{-k \theta}$
PFR shows better performance esp. at high HRTs

Reactor analysis: CSTR, Monod, Steady-state

1) Schematics, CV \& assumption
$X_{a}=0$ in the influent
(negligible influent biomass)

2) Set mass balance
[substrate mass balance]

$$
0=Q S^{0}-Q S+r_{u t} V
$$

[active biomass mass balance]

$$
0=-Q X_{a}+r_{n e t} V
$$

3) Rearrange/solve

[substrate mass balance]

$$
\begin{aligned}
& 0=Q S^{0}-Q S+r_{u t} V \\
& 0=Q\left(S^{0}-S\right)-\frac{\hat{q} S}{K+S} X_{a} V \\
& 0=\left(S^{0}-S\right)-\frac{\hat{q} S}{K+S} X_{a} \theta
\end{aligned}
$$

[active biomass mass balance]

$$
\begin{aligned}
& 0=-Q X_{a}+r_{n e t} V \\
& 0=-Q X_{a}+\left(Y \frac{\hat{q} S}{K+S}-b\right) X_{a} V
\end{aligned}
$$

Analytical solution: CSTR, Monod, Steady-state

$$
\begin{aligned}
& S=K \frac{1+\boldsymbol{b} \boldsymbol{\theta}}{\boldsymbol{Y} \widehat{\boldsymbol{q}} \boldsymbol{\theta}-(\mathbf{1}+\boldsymbol{b} \boldsymbol{\theta})} \quad \text {-- surprisingly, not } f\left(S^{0}\right)! \\
& X_{a}=Y \frac{S^{0}-\boldsymbol{S}}{\mathbf{1}+\boldsymbol{b} \boldsymbol{\theta}}
\end{aligned}
$$

