
U Kang

Reinforcement Learning

Eligibility Traces

U Kang
Seoul National University



U Kang

In This Lecture

 Eligibility traces



U Kang

Overview

 Eligibility traces are one of the basic mechanisms of RL
 E.g., in the TD(𝜆) algorithm, the 𝜆 refers to the use of an eligibility trace

 Almost any TD method, such as Q-learning or Sarsa, can be combined 
with eligibility traces to obtain a more general method that may learn 
more efficiently

 Eligibility traces unify and generalize TD and MC methods
 When TD methods are augmented with eligibility traces, they produce a 

family of methods spanning a spectrum that has MC methods at one end 
(𝜆=1) and one-step TD methods at the other (𝜆=0)

 In between are intermediate methods that are often better than either 
extreme method

 Eligibility traces also provide a way of implementing MC methods online 
and on continuing problems without episodes



U Kang

Overview

 In fact, the n-step TD methods also unify TD and MC methods
 What eligibility traces offer beyond these is an elegant algorithmic 

mechanism with significant computational advantages
 The mechanism is a short-term memory vector, the eligibility trace 𝑧𝑡 ∈

𝑅𝑑, that parallels the long-term weight vector 𝑤𝑡 ∈ 𝑅𝑑

 The rough idea is that when a component of 𝑤𝑡 participates in 
producing an estimated value, then the corresponding component of 𝑧𝑡
is bumped up and then begins to fade away

 Learning will then occur in that component of 𝑤𝑡 if a nonzero TD error 
occurs before the trace falls back to zero

 The trace-decay parameter 𝜆 ∈ [0,1] determines the rate at which the 
trace falls



U Kang

Overview

 The primary computational advantage of eligibility traces over n-step 
methods is that only a single trace vector is required rather than the last 
n feature vectors

 Learning also occurs continually and uniformly in time rather than being 
delayed and then catching up at the end of the episode

 In addition learning can occur and affect behavior immediately after a 
state is encountered rather than being delayed n steps



U Kang

Overview

 Eligibility traces illustrate that a learning algorithm can sometimes be 
implemented in a different way to obtain computational advantages 

 Many algorithms are most naturally formulated and understood as an 
update of a state’s value based on events that follow that state over 
multiple future time steps (e.g., MC and TD)

 Such formulations, based on looking forward from the updated state, 
are called forward views

 Forward views are always somewhat complex to implement because the 
update depends on later things that are not available at the time

 However, it is often possible to achieve nearly the same updates—and 
sometimes exactly the same updates—with an algorithm that uses the 
current TD error, looking backward to recently visited states using an 
eligibility trace

 These alternative ways of looking at and implementing learning 
algorithms are called backward views



U Kang

Outline

The 𝝀-return
TD(𝜆)
Conclusion



U Kang

The 𝝀-return

 An n-step return is the sum of the first n rewards plus the estimated 
value of the state reached in n steps, each appropriately discounted

 ො𝑣(𝑠, 𝑤) is the approximate value of state s given weight vector w, and T 
is the time of episode termination, if any

𝐺𝑡:𝑡+𝑛 ሶ= 𝑅𝑡+1 + 𝛾𝑅𝑡+2 +⋯+ 𝛾𝑛−1𝑅𝑡+𝑛 + 𝛾𝑛 ො𝑣 𝑆𝑡+𝑛, 𝑤𝑡+𝑛−1 , 0 ≤ 𝑡 ≤ 𝑇 − 𝑛



U Kang

The 𝝀-return

 Note that a valid update can be done not just toward any n-step return, 
but toward any average of 𝑛-step returns for different 𝑛s

 For example, an update can be done toward a target that is half of a 
two-step return and half of a four-step return: 1

2
𝐺𝑡:𝑡+2 +

1

2
𝐺𝑡:𝑡+4

 Any set of n-step returns can be averaged in this way, as long as the 
weights on the component returns are positive and sum to 1

 The composite return possesses an error reduction property similar to 
that of individual n-step returns and thus can be used to construct 
updates with guaranteed convergence properties

 Averaging produces a substantial new range of algorithms
 E.g., one could average one-step and infinite-step returns to obtain another 

way of interrelating TD and MC methods
 One could even average experience-based updates with DP updates to 

get a simple combination of experience-based and model-based 
methods



U Kang

The 𝝀-return

 An update that averages simpler component 
updates is called a compound update

 The backup diagram for a compound update 
consists of the backup diagrams for each of the 
component updates with a horizontal line above 
them and the weighting fractions below

 A compound update can only be done when the 
longest of its component updates is complete

Sutton and Barto, 

Reinforcement 

Learning, 2018



U Kang

The 𝝀-return

 The 𝜆-return algorithm can be 
understood as a way of averaging 
n-step updates

 This average contains all the n-
step updates, each weighted 
proportionally to 𝜆𝑛−1 (where 𝜆 ∈
[0,1]), and is normalized by a 
factor of 1−𝜆 to ensure that the 
weights sum to 1

 The resulting update is toward a 
return, called the 𝜆-return, 
defined in its state-based form by

Sutton and Barto, 

Reinforcement 

Learning, 2018

𝐺𝑡
𝜆 ሶ= 1 − 𝜆 

𝑛=1

∞

𝜆𝑛−1 𝐺𝑡:𝑡+𝑛



U Kang

The 𝝀-return

 If we want, we can separate these post-termination terms from the main 
sum, yielding

Sutton and Barto, 

Reinforcement 

Learning, 2018

𝐺𝑡
𝜆 = 1 − 𝜆 

𝑛=1

𝑇−𝑡−1

𝜆𝑛−1 𝐺𝑡:𝑡+𝑛 + 𝜆𝑇−𝑡−1𝐺𝑡

𝐺𝑡
𝜆 ሶ= 1 − 𝜆 

𝑛=1

∞

𝜆𝑛−1 𝐺𝑡:𝑡+𝑛



U Kang

The 𝝀-return

 Thus, for 𝜆 = 1, updating according to the 𝜆-return is a MC algorithm
 On the other hand, if 𝜆 = 0, then the 𝜆-return reduces to 𝐺𝑡:𝑡+1, the one-

step return. Thus, for 𝜆 = 0, updating according to the 𝜆-return is a one-
step TD method

𝐺𝑡
𝜆 ሶ= 1 − 𝜆 

𝑛=1

∞

𝜆𝑛−1 𝐺𝑡:𝑡+𝑛

𝐺𝑡
𝜆 = 1 − 𝜆 

𝑛=1

𝑇−𝑡−1

𝜆𝑛−1 𝐺𝑡:𝑡+𝑛 + 𝜆𝑇−𝑡−1𝐺𝑡



U Kang

The 𝝀-return

 Offline 𝜆-return algorithm
 It is based on the 𝜆-return
 As an offline algorithm, it makes no changes to the weight vector during the 

episode
 Then, at the end of the episode, a whole sequence of offline updates are 

made according to our usual semi-gradient rule, using the 𝜆-return as the 
target

𝑤𝑡+1 ሶ= 𝑤𝑡 + 𝛼 𝐺𝑡
𝜆 − ො𝑣 𝑆𝑡 , 𝑤𝑡 𝛻ොv 𝑆𝑡 , 𝑤𝑡 , 𝑡 = 0,… , 𝑇 − 1



U Kang

The 𝝀-return

 The 𝜆-return gives us an alternative way of moving smoothly between 
MC and one-step TD methods that can be compared with the n-step 
bootstrapping

 The figure shows the comparison on a 19-state random walk task
 Note that overall performance of the offline 𝜆-return algorithms is 

comparable to that of the n-step algorithms; in both cases we get best 
performance with an intermediate value of the bootstrapping parameter

Sutton and Barto, 

Reinforcement 

Learning, 2018



U Kang

The 𝝀-return

 The approach that we have been taking so far is what we call theoretical 
or forward view of a learning algorithm

 For each state visited, we look forward in time to all the future rewards 
and decide how best to combine them

 We might imagine ourselves riding the stream of states, looking forward 
from each state to determine its update

 After looking forward from and updating one state, we move on to the 
next and never have to work with the preceding state again

 Future states, on the other hand, are viewed and processed repeatedly, 
once from each vantage point preceding them

Sutton and Barto, 

Reinforcement 

Learning, 2018



U Kang

Outline

The 𝜆-return
TD(𝝀)
Conclusion



U Kang

TD(𝝀)

 TD(𝜆) is one of the oldest and most widely used algorithms in RL
 It was the first algorithm for which a formal relationship was shown 

between a more theoretical forward view and a more computationally-
congenial backward view using eligibility traces

 We will show empirically that it approximates the offline 𝜆-return 
algorithm

 TD(𝜆) improves over the offline 𝜆-return algorithm in three ways
 1) It updates the weight vector on every step of an episode rather than only 

at the end, and thus its estimates may be better sooner
 2) Its computations are equally distributed in time rather than all at the end 

of the episode
 3) It can be applied to continuing problems rather than just to episodic 

problems
 We present the semi-gradient version of TD(𝜆) with FA



U Kang

ASIDE: Eligibility Trace for Tabular 
Setting

 Which state contributed to a reward?

 𝐸0 𝑠 = 0

 𝐸𝑡 𝑠 = 𝛾𝜆𝐸𝑡−1 𝑠 + 1(𝑆𝑡 = 𝑠)



U Kang

ASIDE: Eligibility Trace for Tabular 
Setting

 Keep an eligibility trace for every state s
 Update value V(s) for every state s, in proportion to TD-error 𝛿𝑡 and 

eligibility trace 𝐸𝑡(𝑠)
 𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉 𝑆𝑡
 𝑉 𝑠 ← 𝑉 𝑠 + 𝛼𝛿𝑡𝐸𝑡(𝑠)

Sutton and Barto, 

Reinforcement 

Learning, 2018



U Kang

ASIDE: Eligibility Trace for Tabular 
Setting

 Eligibility trace
 𝐸0 𝑠 = 0

 𝐸𝑡 𝑠 = 𝛾𝜆𝐸𝑡−1 𝑠 + 1(𝑆𝑡 = 𝑠)

 𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉 𝑆𝑡
 𝑉 𝑠 ← 𝑉 𝑠 + 𝛼𝛿𝑡𝐸𝑡(𝑠)

 When 𝜆 = 0, only the current state is updated
 𝐸𝑡 𝑠 = 1(𝑆𝑡 = 𝑠)

 𝑉 𝑠 ← 𝑉 𝑠 + 𝛼𝛿𝑡𝐸𝑡(𝑠)

 This is exactly equivalent to TD(0) update
 𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼𝛿𝑡



U Kang

ASIDE: Eligibility Trace for Tabular 
Setting

 Eligibility trace
 𝐸0 𝑠 = 0

 𝐸𝑡 𝑠 = 𝛾𝜆𝐸𝑡−1 𝑠 + 1(𝑆𝑡 = 𝑠)

 𝛿𝑡 = 𝑅𝑡+1 + 𝛾𝑉 𝑆𝑡+1 − 𝑉 𝑆𝑡
 𝑉 𝑠 ← 𝑉 𝑠 + 𝛼𝛿𝑡𝐸𝑡(𝑠)

 When 𝜆 = 1, TD(𝜆) behaves similarly to MC method
 Consider episodic environments
 Over the course of an episode, total update for TD(1) is the same as 

total update for MC

 σ𝑡=1
𝑇 𝛼𝛿𝑡𝐸𝑡(𝑠) = σ𝑡=1

𝑇 𝛼 𝐺𝑡 − 𝑉 𝑆𝑡 1(𝑆𝑡 = 𝑠)



U Kang

ASIDE: Eligibility Trace for Tabular 
Setting

 Theorem: σ𝑡=1
𝑇 𝛼𝛿𝑡𝐸𝑡(𝑠) = σ𝑡=1

𝑇 𝛼 𝐺𝑡 − 𝑉 𝑆𝑡 1(𝑆𝑡 = 𝑠)

 Proof
 Consider an episode where s is visited once at time-step k
 When 𝜆 = 1, TD(𝜆) eligibility trace is given by

 By the end of episode, TD(1) accumulates the total error

𝐸𝑡 𝑠 = 𝛾𝐸𝑡−1 𝑠 + 𝟏 𝑆𝑡 = 𝑠

= ቊ
0 𝑖𝑓 𝑡 < 𝑘

𝛾𝑡−𝑘 𝑖𝑓 𝑡 ≥ 𝑘

𝛿𝑘 + 𝛾𝛿𝑘+1 + 𝛾2𝛿𝑘+2 +⋯+ 𝛾𝑇−1−𝑘𝛿𝑇−1



U Kang

ASIDE: Eligibility Trace for Tabular 
Setting

 Theorem: σ𝑡=1
𝑇 𝛼𝛿𝑡𝐸𝑡(𝑠) = σ𝑡=1

𝑇 𝛼 𝐺𝑡 − 𝑉 𝑆𝑡 1(𝑆𝑡 = 𝑠)

 Proof (cont.)

𝛿𝑘 + 𝛾𝛿𝑘+1 + 𝛾2𝛿𝑘+2 +⋯+ 𝛾𝑇−1−𝑘𝛿𝑇−1
= 𝑅𝑘+1 + 𝛾𝑉 𝑆𝑘+1 − 𝑉 𝑆𝑘
+𝛾𝑅𝑘+2 + 𝛾2𝑉 𝑆𝑘+2 − 𝛾𝑉 𝑆𝑘+1
+𝛾2𝑅𝑘+3 + 𝛾3𝑉 𝑆𝑘+3 − 𝛾2𝑉 𝑆𝑘+2

⋮
+𝛾𝑇−1−𝑘𝑅𝑇 + 𝛾𝑇−𝑘𝑉 𝑆𝑇 − 𝛾𝑇−1−𝑘𝑉 𝑆𝑇−1
= 𝑅𝑘+1 + 𝛾𝑅𝑘+2 + 𝛾2𝑅𝑘+3 +⋯+ 𝛾𝑇−1−𝑘𝑅𝑇 − 𝑉 𝑆𝑘
= 𝐺𝑘 − 𝑉(𝑆𝑘)



U Kang

TD(𝝀)

 With FA, the eligibility trace is a vector 𝑧𝑡 ∈ 𝑅𝑑 with the same number of 
components as the weight vector 𝑤𝑡

 Whereas the weight vector is a long-term memory, accumulating over 
the lifetime of the system, the eligibility trace is a short-term memory, 
typically lasting less time than the length of an episode

 Eligibility traces assist in the learning process; their only consequence is 
that they affect the weight vector, and then the weight vector 
determines the estimated value

 In TD(𝜆), the eligibility trace vector is initialized to 0 at the beginning of 
the episode, is incremented on each time step by the value gradient, and 
then fades away by 𝛾𝜆:

 where 𝛾 is the discount rate and 𝜆 is the trace-decay parameter

𝑧−1 ሶ= 𝟎,
𝑧𝑡 ሶ= 𝛾𝜆𝑧𝑡−1 + 𝛻ොv 𝑆𝑡 , 𝑤𝑡 , 0 ≤ 𝑡 ≤ 𝑇



U Kang

TD(𝝀)

 The eligibility trace keeps track of which components of the weight 
vector have contributed, positively or negatively, to recent state 
valuations, where “recent” is defined in terms of 𝛾𝜆
 In linear FA, 𝛻 ො𝑣(𝑆𝑡, 𝑤𝑡) is just the feature vector 𝑥𝑡 in which case the eligibility 

trace vector is just a sum of past, fading, input vectors
 The trace is said to indicate the eligibility of each component of the 

weight vector for undergoing learning changes should a reinforcing 
event occur

 The reinforcing events we are concerned with are the moment-by-
moment one-step TD errors

 In TD(𝜆), the weight vector is updated on each step proportional to the 
scalar TD error and the vector eligibility trace:

𝑤𝑡+1 = 𝑤𝑡 + 𝛼𝛿𝑡𝑧𝑡

𝑧−1 ሶ= 𝟎,
𝑧𝑡 ሶ= 𝛾𝜆𝑧𝑡−1 + 𝛻ොv 𝑆𝑡 , 𝑤𝑡 , 0 ≤ 𝑡 ≤ 𝑇

𝛿𝑡 ሶ= 𝑅𝑡+1 + 𝛾ො𝑣 𝑆𝑡+1, 𝑤𝑡 − ො𝑣(𝑆𝑡 , 𝑤𝑡)



U Kang

TD(𝝀)

Sutton and Barto, 

Reinforcement 

Learning, 2018



U Kang

TD(𝝀)

 TD(𝜆) is oriented backward in time
 At each moment we look at the current TD error and assign it backward 

to each prior state according to how much that state contributed to the 
current eligibility trace at that time

 We might imagine ourselves riding along the stream of states, 
computing TD errors, and shouting them back to the previously visited 
states

 Where the TD error and traces come together, we get the update given 
by 𝑤𝑡+1 = 𝑤𝑡 + 𝛼𝛿𝑡𝑧𝑡, changing the values of those past states for when 
they occur again in the future

Sutton and Barto, 

Reinforcement 

Learning, 2018



U Kang

TD(𝝀)

 To better understand the backward view of TD(𝜆), consider what 
happens at various values of 𝜆

 If 𝜆 = 0, the trace at t is exactly the value gradient corresponding to 𝑆𝑡
 Thus the TD(𝜆) update 𝑤𝑡+1 = 𝑤𝑡 + 𝛼𝛿𝑡𝑧𝑡 reduces to the one-step semi-

gradient TD update (and, in the tabular case, to the simple TD rule)
 This is why that algorithm was called TD(0)
 TD(0) is the case in which only the one state preceding the current one is 

changed by the TD error
 For larger values of 𝜆, but still 𝜆 < 1, more of the preceding states are 

changed, but each more temporally distant state is changed less 
because the corresponding eligibility trace is smaller

 We say that the earlier states are given less credit for the TD error

𝑧−1 ሶ= 𝟎,
𝑧𝑡 ሶ= 𝛾𝜆𝑧𝑡−1 + 𝛻ොv 𝑆𝑡 , 𝑤𝑡 , 0 ≤ 𝑡 ≤ 𝑇



U Kang

TD(𝝀)

 If 𝜆 = 1, then the credit given to earlier states falls only by 𝛾 per step
 This turns out to be just the right thing to do to achieve MC behavior
 For example, remember that the TD error 𝛿𝑡 includes an undiscounted 

term of 𝑅𝑡+1
 In passing this back k steps it needs to be discounted, like any reward in 

a return, by 𝛾𝑘, which is just what the falling eligibility trace achieves

 If 𝜆 = 1 and 𝛾 = 1, then the eligibility traces do not decay at all with time
 In this case the method behaves like an MC method for an 

undiscounted, episodic task
 If 𝜆 = 1, the algorithm is also known as TD(1)



U Kang

TD(𝝀)

 TD(1) is a way of implementing MC algorithms that is more general and 
that significantly increases their range of applicability

 Whereas the earlier MC methods were limited to episodic tasks, TD(1) 
can be applied to discounted continuing tasks as well

 Moreover, TD(1) can be performed incrementally and online
 One disadvantage of MC methods is that they learn nothing from an 

episode until it is over; e.g., if an MC control method takes an action that 
produces a very poor reward but does not end the episode, then the 
agent’s tendency to repeat the action will be undiminished during the 
episode

 Online TD(1), on the other hand, learns in an n-step TD way from the 
incomplete ongoing episode, where the n steps are all the way up to the 
current step

 If something unusually good or bad happens during an episode, control 
methods based on TD(1) can learn immediately



U Kang

TD(𝝀)

 The figure shows the performance of TD(𝜆) on the 19-state random walk
 The two algorithms perform virtually identically

Sutton and Barto, 

Reinforcement 

Learning, 2018



U Kang

Outline

The 𝜆-return
TD(𝜆)
Conclusion



U Kang

Conclusion

 Eligibility traces in conjunction with TD errors provide an efficient, 
incremental way of shifting and choosing between MC and TD methods

 The n-step methods also enabled this, but eligibility trace methods are 
more general, often faster to learn, and offer different computational 
complexity tradeoff

 Eligibility traces enable more efficient and incremental backward-view 
algorithms compared to intuitive forward-view methods



U Kang

Conclusion

 MC methods may have advantages in non-Markov tasks because they do 
not bootstrap
 I.e., MC methods do not update their value estimates on the basis of those of 

successor states

 Because eligibility traces make TD methods more like MC methods, they 
also can have advantages in these cases

 If one wants to use TD methods because of their other advantages, but 
the task is at least partially non-Markov, then the use of an eligibility 
trace method is desired

 Eligibility traces are the first line of defense against both long-delayed 
rewards and non-Markov tasks



U Kang

Conclusion

 By adjusting 𝜆, we can place eligibility trace methods anywhere along a 
continuum from MC to one-step TD methods

 An intermediate mixture appears to be the best choice; eligibility traces 
should be used to bring us toward MC methods, but not all the way 
there



U Kang

Conclusion

 Methods using eligibility traces require more computation than one-step 
methods, but in return they offer significantly faster learning, 
particularly when rewards are delayed by many steps

 Thus it often makes sense to use eligibility traces in online applications 
where data are scarce and cannot be repeatedly processed

 On the other hand, in offline applications in which data can be 
generated cheaply, perhaps from an inexpensive simulation, then it 
often does not pay to use eligibility traces

 In these cases the objective is not to get more out of a limited amount of 
data, but simply to process as much data as possible as quickly as 
possible

 In these cases the speedup per datum due to eligibility traces is typically 
not worth their computational cost



U Kang

Questions?


