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In This Lecture

 Recurrent Neural Network
 Main idea
 Major architectures
 Problem of long-term dependencies and how to solve 

them (LSTM, etc.)
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RNN

 Recurrent neural network (RNN)
 A family of neural networks for processing sequential data
 Can scale to much longer sequences than other networks 

do
 Can process sequences of variable (or infinite) length

 To go from multi-layer networks to RNN
 Sharing parameters across different parts of a model

 Allows extending the model to examples of different length
 Important when a specific piece of information can occur at 

multiple positions within the sequence
 E.g., recognize year 2009 as the relevant piece of information in 

the two sentences “I went to Nepal in 2009” and “In 2009, I went 
to Nepal”



U Kang 4

Classical Dynamical System

 Consider the classical form of a dynamical 
system: 𝑠𝑠(𝑡𝑡) = 𝑓𝑓(𝑠𝑠 𝑡𝑡−1 ; 𝜃𝜃)

 The system can be expressed with the unfolded 
computational graph
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Unfolding Computation Graphs

 Consider a dynamical system driven by an 
external signal 𝑥𝑥(𝑡𝑡)

 ℎ(𝑡𝑡) = 𝑓𝑓(ℎ 𝑡𝑡−1 , 𝑥𝑥(𝑡𝑡); 𝜃𝜃)

delay of a single 
time step

recurrent graph
or circuit diagram

unrolled graph
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Recurrent Hidden Units



U Kang 7

Recurrent through only the Output

 Less powerful than the previous model since the output 
cannot encode all the information in the hidden node

 But, it allows efficient training since each time step can be 
trained in isolation from the others (will be described soon)
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Sequence Input, Single Output

 Used to summarize a sequence and produce a 
fixed-size representation used as input for 
further processing
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Teacher Forcing

 An RNN, where recurrent connections are from the output at 
one time step to the hidden units at the next time step, can 
be trained efficiently with teacher forcing
 Enables parallel learning
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Forward/Back Propagation in RNN
 𝒂𝒂(𝑡𝑡) = 𝒃𝒃 + 𝑾𝑾𝒉𝒉(𝑡𝑡−1) + 𝑼𝑼𝒙𝒙(𝑡𝑡)

 𝒉𝒉(𝑡𝑡) = tanh(𝒂𝒂 𝑡𝑡 )
 𝒐𝒐(𝑡𝑡) = 𝒄𝒄 + 𝑽𝑽𝒉𝒉(𝑡𝑡)

 �𝒚𝒚(𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥(𝒐𝒐 𝑡𝑡 )
 The total loss is the sum of the losses 

over all time steps:
 𝐿𝐿 𝒙𝒙(1), … ,𝒙𝒙(𝜏𝜏) , 𝒚𝒚(1), … ,𝒚𝒚(𝜏𝜏)

= ∑𝑡𝑡 𝐿𝐿(𝑡𝑡)

= −∑𝑡𝑡 log𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝒚𝒚 𝑡𝑡 | 𝒙𝒙 1 , … , 𝒙𝒙 𝜏𝜏 )

 Use back propagation through time 
(BPTT) to compute gradient
 BPTT is essentially the same standard back-

propagation algorithm on the unfolded 
computational graph
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Modeling Sequences Conditioned on Context

 The RNN in the figure below models 𝑃𝑃(𝑥𝑥; 𝜃𝜃), where 𝑦𝑦’s are 
used only to evaluate the model

 We can also use RNN to model 𝑃𝑃(𝑦𝑦|𝑥𝑥), by using 𝑃𝑃(𝑦𝑦|𝑤𝑤)
where 𝑤𝑤 = 𝑓𝑓 𝑥𝑥;𝜃𝜃 is a function of 𝑥𝑥. 
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Modeling Sequences Conditioned on Context

 Modeling 𝑃𝑃(𝑦𝑦(𝑡𝑡)|𝑥𝑥) for a fixed 𝑥𝑥: make it an extra input of the 
RNN that generates the 𝑦𝑦 sequence

 How to provide an extra input to an RNN?
 Add the input as an extra input at each time step
 Add the input as the initial state ℎ(0), or
 both
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Vector to Sequence

 Adding an extra input x at each time step
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Hidden and Output Recurrence

 RNN may receive a sequence of vectors 𝑥𝑥(𝑡𝑡) as 
extra input
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Bidirectional RNN

 All of the RNN we have considered up to now have a “causal” 
structure
 I.e., the state at time t only captures information from the past, 

𝑥𝑥(1), … , 𝑥𝑥(𝑡𝑡−1), and the present input 𝑥𝑥(𝑡𝑡)

 However, in many applications we want to output prediction 
of 𝑦𝑦(𝑡𝑡) which may depend on the whole input sequence
 Speech recognition: the correct interpretation as a phoneme of the 

current sound may depend on the next few phonemes
 Handwriting recognition
 Bioinformatics

 Bidirectional RNNs were invented to address that need
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Bidirectional RNN
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Sequence to Sequence Architecture

 Training RNN to map an input sequence to an output 
sequence which is not necessarily of the same length
 Speech recognition
 Machine translation
 Question answering

 The simplest RNN architecture for mapping a variable-length 
sequence to another variable-length sequence is called 
sequence-to-sequence or encoder-decoder architecture
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Sequence to Sequence Architecture
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Sequence to Sequence Architecture

 Sequence-to-sequence or encoder-decoder architecture
 An encoder or reader or input RNN processes the input sequence 𝑋𝑋 =

(𝑥𝑥 1 , … , 𝑥𝑥𝑛𝑛𝑥𝑥), and emits the context C, usually as a simple function of its 
final hidden state

 A decoder or writer or output RNN is conditioned on that fixed-length 
vector to generate the output sequence 𝑌𝑌 = (𝑦𝑦 1 , … ,𝑦𝑦 𝑛𝑛𝑦𝑦 )

 Note that 𝑛𝑛𝑥𝑥 and 𝑛𝑛𝑦𝑦 can be different
 The two RNNs are trained jointly to maximize the average of 

log𝑃𝑃(𝑦𝑦 1 , … ,𝑦𝑦 𝑛𝑛𝑦𝑦 |𝑥𝑥 1 , … , 𝑥𝑥𝑛𝑛𝑥𝑥) over all the pairs of 𝑥𝑥 and 𝑦𝑦 sequences 
in the training set

 The last state ℎ𝑛𝑛𝑥𝑥 of the encoder RNN is typically used as a 
representation 𝐶𝐶 of the input sequence that is provided as input to the 
decoder RNN
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Deep RNNs

 Computation in most RNNs can be decomposed into three 
blocks of parameters and associated transformations
 From the input to the hidden state
 From the previous hidden state to the next hidden state
 From the hidden state to the output

 Deep RNN: introduce depth in each of these operations
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Deep RNNs

 (a) two hidden states
 (b) separate MLP for each of the three blocks
 (c) skip connection
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Recursive Network
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Challenge of Long-Term Dependencies

 Recurrent networks involve the composition of the same 
function multiple times, once per time step

 The function composition resembles matrix multiplication: 
ℎ(𝑡𝑡) = 𝑊𝑊𝑇𝑇ℎ(𝑡𝑡−1) = ⋯ = (𝑊𝑊𝑡𝑡)𝑇𝑇ℎ(0)

 If 𝑊𝑊 is decomposed into 𝑄𝑄Λ𝑄𝑄𝑇𝑇 by an eigendecomposition, then 
ℎ(𝑡𝑡) = 𝑄𝑄Λ𝑡𝑡𝑄𝑄𝑇𝑇ℎ(0)

 This means the eigenvalues with magnitude less than one to 
decay to 0 and eigenvalues with magnitude greater than one to 
explode

 This leads to vanishing or exploding gradient problem
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Strategies for Long-term Dependencies

 Design a model that operates at multiple time scales, so that 
some parts of the model operate at fine-grained time scales and 
can handle small details, while other parts operate at coarse 
time scales and transfer information from the distant past to the 
present more efficiently
 Skip connections across time
 “Leaky units” that integrate signals with different time constants
 Removal of some of the connections used to model fine-grained time 

scales
 Gated RNNs

 Long Short-Term Memory (LSTM)
 Gated Recurrent Unit (GRU)
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Skip Connections through Time

 One way to obtain coarse time scales is to add direct connections 
from variables in the distant past to variables in the present
 The idea is similar to that of ResNet

 Gradients may vanish or explode exponentially with respect to 
the number t of time steps

 Introducing recurrent connections with a time-delay of d makes 
gradient diminish exponentially as a function of t/d rather than t

 Since there are both delayed and single step connections, 
gradients may still explode exponentially in t

 This allows the learning algorithm to capture longer 
dependencies although not all long-term dependencies may be 
represented well in this way
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Leaky Units

 When we accumulate a running average 𝜇𝜇(𝑡𝑡) of some value 𝑣𝑣(𝑡𝑡)

by applying the update 𝜇𝜇(𝑡𝑡) ← 𝛼𝛼𝜇𝜇(𝑡𝑡−1) + (1 − 𝛼𝛼)𝑣𝑣(𝑡𝑡), the 𝛼𝛼
parameter is an example of a linear self-connection from 𝜇𝜇(𝑡𝑡−1)

to 𝜇𝜇(𝑡𝑡)

 When 𝛼𝛼 is near 1, the running average remembers information about the 
past for a long time

 When 𝛼𝛼 is near 0, information about the past is rapidly discarded

 Leaky units: hidden units with linear self-connections
 This approach allows to control the degree of using past information by 

adjusting 𝛼𝛼



U Kang 27

Removing Connections

 Removing length-one connections and replacing them 
with longer connections
 This is different from skip connections that add edges; units 

receiving such new connections may learn to operate on a 
long time scale but may also choose to focus on their other 
short-term connections
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Gated RNNs

 Like leaky units, gated RNNS are based on the idea of creating 
paths through time that have derivatives that neither vanish nor 
explode
 Leaky units did this with manually chosen connection weights; Gated RNNs 

allow the connection weights to change at each time step

 Leaky units allow the network to accumulate information over 
time. However, once that information has been used, it might be 
useful to forget the old state
 Gated RNNs learn to decide when to clear the old state
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Long Short-Term Memory (LSTM)

 An LSTM recurrent network “cell” that replaces a hidden unit 
in a typical RNN

An LSTM cell

Each cell (e.g. ℎ(𝑡𝑡)) in RNN
receives input x and 
its previous state ℎ(𝑡𝑡−1)

to make an output
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LSTM

 Initial LSTM (1997): introducing self-
loops to produce paths where the 
gradient can flow for long durations

 (2000) Making the weight on this 
self-loop gated (controlled by 
another hidden unit)

 LSTM is a core module for many 
applications
 Handwriting recognition
 Speech recognition
 Handwriting generation
 Machine translation
 Image captioning
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LSTM
 Self-loop weight is controlled by a forget 

gate unit 𝑓𝑓𝑖𝑖
(𝑡𝑡) for time step t and cell i

 𝑓𝑓𝑖𝑖
(𝑡𝑡) = 𝜎𝜎(𝑏𝑏𝑖𝑖

𝑓𝑓 + ∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗
𝑓𝑓 𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗
𝑓𝑓ℎ𝑗𝑗

𝑡𝑡−1 )

 The internal state 𝑠𝑠𝑖𝑖
(𝑡𝑡) is updated with a 

conditional self-loop weight 𝑓𝑓𝑖𝑖
(𝑡𝑡)

 𝑠𝑠𝑖𝑖
(𝑡𝑡) = 𝑓𝑓𝑖𝑖

(𝑡𝑡)𝑠𝑠𝑖𝑖
(𝑡𝑡−1) + 𝑔𝑔𝑖𝑖

𝑡𝑡 𝜎𝜎(𝑏𝑏𝑖𝑖 +
∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗 ℎ𝑗𝑗
𝑡𝑡−1 )

 The external input gate unit 𝑔𝑔𝑖𝑖
(𝑡𝑡) is 

computed similarly to the forget gate

 𝑔𝑔𝑖𝑖
(𝑡𝑡) = 𝜎𝜎(𝑏𝑏𝑖𝑖

𝑔𝑔 + ∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗
𝑔𝑔 𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗
𝑔𝑔ℎ𝑗𝑗

𝑡𝑡−1 )

 The output ℎ𝑖𝑖
(𝑡𝑡) of the LSTM cell can also 

be shut off, via the output gate 𝑞𝑞𝑖𝑖
(𝑡𝑡)

 ℎ𝑖𝑖
(𝑡𝑡) = tanh(𝑠𝑠𝑖𝑖

(𝑡𝑡))𝑞𝑞𝑖𝑖
(𝑡𝑡)

 𝑞𝑞𝑖𝑖
(𝑡𝑡) = 𝜎𝜎(𝑏𝑏𝑖𝑖𝑚𝑚 + ∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗𝑚𝑚 𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗
𝑚𝑚 ℎ𝑗𝑗

𝑡𝑡−1 )
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Gated Recurrent Unit (GRU)

 Similar to LSTM; the main difference is that in GRU a single gating 
unit simultaneously controls the forgetting factor and the 
decision to update the state unit
 ℎ𝑖𝑖

(𝑡𝑡) = 𝑢𝑢𝑖𝑖
(𝑡𝑡−1)ℎ𝑖𝑖

(𝑡𝑡−1) + (1 − 𝑢𝑢𝑖𝑖
𝑡𝑡−1 )𝜎𝜎(𝑏𝑏𝑖𝑖 + ∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗 𝑟𝑟𝑗𝑗
𝑡𝑡−1 ℎ𝑗𝑗

𝑡𝑡−1 )

 𝑢𝑢 stands for “update” gate and 𝑟𝑟 for “reset” gate

 𝑢𝑢𝑖𝑖
(𝑡𝑡) = 𝜎𝜎(𝑏𝑏𝑖𝑖𝑢𝑢 + ∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗𝑢𝑢 𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗
𝑢𝑢 ℎ𝑗𝑗

𝑡𝑡 )

 𝑟𝑟𝑖𝑖
(𝑡𝑡) = 𝜎𝜎(𝑏𝑏𝑖𝑖𝑟𝑟 + ∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗𝑟𝑟 𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗
𝑟𝑟 ℎ𝑗𝑗

𝑡𝑡 )

 GRU is less complex (computationally efficient) than LSTM while 
providing similar accuracy
 GRU uses 2 gates, while LSTM uses 3 gates
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GRU
output

x

update gate

x
1 -

x

reset gate

x: sequence of input

previous hidden state
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Optimization for Long-Term Dependencies

 Gradients of parameters in RNN can be very large due to long-
term dependencies

 When the parameter gradient is very large, a gradient descent 
parameter update could throw the parameters very far, into a 
region where the objective function is larger, undoing much of 
the work that hand been done to reach the current solution

 Gradient clipping: a simple solution that avoids very large 
gradient
 2 versions

 Clip the gradient element wise, just before the parameter update
 Clip the norm | 𝑔𝑔 | of the gradient 𝑔𝑔, just before the parameter update

 If 𝑔𝑔 > 𝑣𝑣, then 𝑔𝑔 ← 𝑔𝑔𝑔𝑔
| 𝑔𝑔 | v: norm threshold
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Gradient Clipping
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Networks with Explicit Memory
 Different types of knowledge

 Implicit: sub-conscious, and difficult to verbalize: e.g., how to walk, 
how a dog looks different from a cat

 Explicit: declarative, and relatively straightforward to put into words. 
E.g., a cat is a kind of animal 

 Neural networks excel at storing implicit knowledge. 
However, they struggle to memorize facts
 The reason is because neural networks lack the working memory

 Memory networks: include a set of memory cells that can be 
accessed via an addressing mechanism

 Neural Turing machine: learns to read from and write 
arbitrary content to memory cells without explicit supervision 
about which actions to undertake, and allowed end-to-end 
training without this supervision signal
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Networks with Explicit Memory
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What you need to know

 Recurrent Neural Network
 Main idea: parameter sharing over time
 Major architectures: 
 Problem of long-term dependencies: vanishing or 

exploding gradient
 Model that operates at a multiple time scale: LSTM
 Optimization: gradient clipping
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Questions?
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