
U Kang 1

Large Scale Data Analysis Using
Deep Learning

Sequence Modeling: Recurrent and
Recursive Nets

U Kang
Seoul National University

U Kang 2

In This Lecture

 Recurrent Neural Network
 Main idea
 Major architectures
 Problem of long-term dependencies and how to solve

them (LSTM, etc.)

U Kang 3

RNN

 Recurrent neural network (RNN)
 A family of neural networks for processing sequential data
 Can scale to much longer sequences than other networks

do
 Can process sequences of variable (or infinite) length

 To go from multi-layer networks to RNN
 Sharing parameters across different parts of a model

 Allows extending the model to examples of different length
 Important when a specific piece of information can occur at

multiple positions within the sequence
 E.g., recognize year 2009 as the relevant piece of information in

the two sentences “I went to Nepal in 2009” and “In 2009, I went
to Nepal”

U Kang 4

Classical Dynamical System

 Consider the classical form of a dynamical
system: 𝑠𝑠(𝑡𝑡) = 𝑓𝑓(𝑠𝑠 𝑡𝑡−1 ; 𝜃𝜃)

 The system can be expressed with the unfolded
computational graph

U Kang 5

Unfolding Computation Graphs

 Consider a dynamical system driven by an
external signal 𝑥𝑥(𝑡𝑡)

 ℎ(𝑡𝑡) = 𝑓𝑓(ℎ 𝑡𝑡−1 , 𝑥𝑥(𝑡𝑡); 𝜃𝜃)

delay of a single
time step

recurrent graph
or circuit diagram

unrolled graph

U Kang 6

Recurrent Hidden Units

U Kang 7

Recurrent through only the Output

 Less powerful than the previous model since the output
cannot encode all the information in the hidden node

 But, it allows efficient training since each time step can be
trained in isolation from the others (will be described soon)

U Kang 8

Sequence Input, Single Output

 Used to summarize a sequence and produce a
fixed-size representation used as input for
further processing

U Kang 9

Teacher Forcing

 An RNN, where recurrent connections are from the output at
one time step to the hidden units at the next time step, can
be trained efficiently with teacher forcing
 Enables parallel learning

U Kang 10

Forward/Back Propagation in RNN
 𝒂𝒂(𝑡𝑡) = 𝒃𝒃 + 𝑾𝑾𝒉𝒉(𝑡𝑡−1) + 𝑼𝑼𝒙𝒙(𝑡𝑡)

 𝒉𝒉(𝑡𝑡) = tanh(𝒂𝒂 𝑡𝑡)
 𝒐𝒐(𝑡𝑡) = 𝒄𝒄 + 𝑽𝑽𝒉𝒉(𝑡𝑡)

 �𝒚𝒚(𝑡𝑡) = 𝑠𝑠𝑠𝑠𝑓𝑓𝑠𝑠𝑠𝑠𝑠𝑠𝑥𝑥(𝒐𝒐 𝑡𝑡)
 The total loss is the sum of the losses

over all time steps:
 𝐿𝐿 𝒙𝒙(1), … ,𝒙𝒙(𝜏𝜏) , 𝒚𝒚(1), … ,𝒚𝒚(𝜏𝜏)

= ∑𝑡𝑡 𝐿𝐿(𝑡𝑡)

= −∑𝑡𝑡 log𝑝𝑝𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝒚𝒚 𝑡𝑡 | 𝒙𝒙 1 , … , 𝒙𝒙 𝜏𝜏)

 Use back propagation through time
(BPTT) to compute gradient
 BPTT is essentially the same standard back-

propagation algorithm on the unfolded
computational graph

U Kang 11

Modeling Sequences Conditioned on Context

 The RNN in the figure below models 𝑃𝑃(𝑥𝑥; 𝜃𝜃), where 𝑦𝑦’s are
used only to evaluate the model

 We can also use RNN to model 𝑃𝑃(𝑦𝑦|𝑥𝑥), by using 𝑃𝑃(𝑦𝑦|𝑤𝑤)
where 𝑤𝑤 = 𝑓𝑓 𝑥𝑥;𝜃𝜃 is a function of 𝑥𝑥.

U Kang 12

Modeling Sequences Conditioned on Context

 Modeling 𝑃𝑃(𝑦𝑦(𝑡𝑡)|𝑥𝑥) for a fixed 𝑥𝑥: make it an extra input of the
RNN that generates the 𝑦𝑦 sequence

 How to provide an extra input to an RNN?
 Add the input as an extra input at each time step
 Add the input as the initial state ℎ(0), or
 both

U Kang 13

Vector to Sequence

 Adding an extra input x at each time step

U Kang 14

Hidden and Output Recurrence

 RNN may receive a sequence of vectors 𝑥𝑥(𝑡𝑡) as
extra input

U Kang 15

Bidirectional RNN

 All of the RNN we have considered up to now have a “causal”
structure
 I.e., the state at time t only captures information from the past,

𝑥𝑥(1), … , 𝑥𝑥(𝑡𝑡−1), and the present input 𝑥𝑥(𝑡𝑡)

 However, in many applications we want to output prediction
of 𝑦𝑦(𝑡𝑡) which may depend on the whole input sequence
 Speech recognition: the correct interpretation as a phoneme of the

current sound may depend on the next few phonemes
 Handwriting recognition
 Bioinformatics

 Bidirectional RNNs were invented to address that need

U Kang 16

Bidirectional RNN

U Kang 17

Sequence to Sequence Architecture

 Training RNN to map an input sequence to an output
sequence which is not necessarily of the same length
 Speech recognition
 Machine translation
 Question answering

 The simplest RNN architecture for mapping a variable-length
sequence to another variable-length sequence is called
sequence-to-sequence or encoder-decoder architecture

U Kang 18

Sequence to Sequence Architecture

U Kang 19

Sequence to Sequence Architecture

 Sequence-to-sequence or encoder-decoder architecture
 An encoder or reader or input RNN processes the input sequence 𝑋𝑋 =

(𝑥𝑥 1 , … , 𝑥𝑥𝑛𝑛𝑥𝑥), and emits the context C, usually as a simple function of its
final hidden state

 A decoder or writer or output RNN is conditioned on that fixed-length
vector to generate the output sequence 𝑌𝑌 = (𝑦𝑦 1 , … ,𝑦𝑦 𝑛𝑛𝑦𝑦)

 Note that 𝑛𝑛𝑥𝑥 and 𝑛𝑛𝑦𝑦 can be different
 The two RNNs are trained jointly to maximize the average of

log𝑃𝑃(𝑦𝑦 1 , … ,𝑦𝑦 𝑛𝑛𝑦𝑦 |𝑥𝑥 1 , … , 𝑥𝑥𝑛𝑛𝑥𝑥) over all the pairs of 𝑥𝑥 and 𝑦𝑦 sequences
in the training set

 The last state ℎ𝑛𝑛𝑥𝑥 of the encoder RNN is typically used as a
representation 𝐶𝐶 of the input sequence that is provided as input to the
decoder RNN

U Kang 20

Deep RNNs

 Computation in most RNNs can be decomposed into three
blocks of parameters and associated transformations
 From the input to the hidden state
 From the previous hidden state to the next hidden state
 From the hidden state to the output

 Deep RNN: introduce depth in each of these operations

U Kang 21

Deep RNNs

 (a) two hidden states
 (b) separate MLP for each of the three blocks
 (c) skip connection

U Kang 22

Recursive Network

U Kang 23

Challenge of Long-Term Dependencies

 Recurrent networks involve the composition of the same
function multiple times, once per time step

 The function composition resembles matrix multiplication:
ℎ(𝑡𝑡) = 𝑊𝑊𝑇𝑇ℎ(𝑡𝑡−1) = ⋯ = (𝑊𝑊𝑡𝑡)𝑇𝑇ℎ(0)

 If 𝑊𝑊 is decomposed into 𝑄𝑄Λ𝑄𝑄𝑇𝑇 by an eigendecomposition, then
ℎ(𝑡𝑡) = 𝑄𝑄Λ𝑡𝑡𝑄𝑄𝑇𝑇ℎ(0)

 This means the eigenvalues with magnitude less than one to
decay to 0 and eigenvalues with magnitude greater than one to
explode

 This leads to vanishing or exploding gradient problem

U Kang 24

Strategies for Long-term Dependencies

 Design a model that operates at multiple time scales, so that
some parts of the model operate at fine-grained time scales and
can handle small details, while other parts operate at coarse
time scales and transfer information from the distant past to the
present more efficiently
 Skip connections across time
 “Leaky units” that integrate signals with different time constants
 Removal of some of the connections used to model fine-grained time

scales
 Gated RNNs

 Long Short-Term Memory (LSTM)
 Gated Recurrent Unit (GRU)

U Kang 25

Skip Connections through Time

 One way to obtain coarse time scales is to add direct connections
from variables in the distant past to variables in the present
 The idea is similar to that of ResNet

 Gradients may vanish or explode exponentially with respect to
the number t of time steps

 Introducing recurrent connections with a time-delay of d makes
gradient diminish exponentially as a function of t/d rather than t

 Since there are both delayed and single step connections,
gradients may still explode exponentially in t

 This allows the learning algorithm to capture longer
dependencies although not all long-term dependencies may be
represented well in this way

U Kang 26

Leaky Units

 When we accumulate a running average 𝜇𝜇(𝑡𝑡) of some value 𝑣𝑣(𝑡𝑡)

by applying the update 𝜇𝜇(𝑡𝑡) ← 𝛼𝛼𝜇𝜇(𝑡𝑡−1) + (1 − 𝛼𝛼)𝑣𝑣(𝑡𝑡), the 𝛼𝛼
parameter is an example of a linear self-connection from 𝜇𝜇(𝑡𝑡−1)

to 𝜇𝜇(𝑡𝑡)

 When 𝛼𝛼 is near 1, the running average remembers information about the
past for a long time

 When 𝛼𝛼 is near 0, information about the past is rapidly discarded

 Leaky units: hidden units with linear self-connections
 This approach allows to control the degree of using past information by

adjusting 𝛼𝛼

U Kang 27

Removing Connections

 Removing length-one connections and replacing them
with longer connections
 This is different from skip connections that add edges; units

receiving such new connections may learn to operate on a
long time scale but may also choose to focus on their other
short-term connections

U Kang 28

Gated RNNs

 Like leaky units, gated RNNS are based on the idea of creating
paths through time that have derivatives that neither vanish nor
explode
 Leaky units did this with manually chosen connection weights; Gated RNNs

allow the connection weights to change at each time step

 Leaky units allow the network to accumulate information over
time. However, once that information has been used, it might be
useful to forget the old state
 Gated RNNs learn to decide when to clear the old state

U Kang 29

Long Short-Term Memory (LSTM)

 An LSTM recurrent network “cell” that replaces a hidden unit
in a typical RNN

An LSTM cell

Each cell (e.g. ℎ(𝑡𝑡)) in RNN
receives input x and
its previous state ℎ(𝑡𝑡−1)

to make an output

U Kang 30

LSTM

 Initial LSTM (1997): introducing self-
loops to produce paths where the
gradient can flow for long durations

 (2000) Making the weight on this
self-loop gated (controlled by
another hidden unit)

 LSTM is a core module for many
applications
 Handwriting recognition
 Speech recognition
 Handwriting generation
 Machine translation
 Image captioning

U Kang 31

LSTM
 Self-loop weight is controlled by a forget

gate unit 𝑓𝑓𝑖𝑖
(𝑡𝑡) for time step t and cell i

 𝑓𝑓𝑖𝑖
(𝑡𝑡) = 𝜎𝜎(𝑏𝑏𝑖𝑖

𝑓𝑓 + ∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗
𝑓𝑓 𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗
𝑓𝑓ℎ𝑗𝑗

𝑡𝑡−1)

 The internal state 𝑠𝑠𝑖𝑖
(𝑡𝑡) is updated with a

conditional self-loop weight 𝑓𝑓𝑖𝑖
(𝑡𝑡)

 𝑠𝑠𝑖𝑖
(𝑡𝑡) = 𝑓𝑓𝑖𝑖

(𝑡𝑡)𝑠𝑠𝑖𝑖
(𝑡𝑡−1) + 𝑔𝑔𝑖𝑖

𝑡𝑡 𝜎𝜎(𝑏𝑏𝑖𝑖 +
∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗 ℎ𝑗𝑗
𝑡𝑡−1)

 The external input gate unit 𝑔𝑔𝑖𝑖
(𝑡𝑡) is

computed similarly to the forget gate

 𝑔𝑔𝑖𝑖
(𝑡𝑡) = 𝜎𝜎(𝑏𝑏𝑖𝑖

𝑔𝑔 + ∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗
𝑔𝑔 𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗
𝑔𝑔ℎ𝑗𝑗

𝑡𝑡−1)

 The output ℎ𝑖𝑖
(𝑡𝑡) of the LSTM cell can also

be shut off, via the output gate 𝑞𝑞𝑖𝑖
(𝑡𝑡)

 ℎ𝑖𝑖
(𝑡𝑡) = tanh(𝑠𝑠𝑖𝑖

(𝑡𝑡))𝑞𝑞𝑖𝑖
(𝑡𝑡)

 𝑞𝑞𝑖𝑖
(𝑡𝑡) = 𝜎𝜎(𝑏𝑏𝑖𝑖𝑚𝑚 + ∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗𝑚𝑚 𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗
𝑚𝑚 ℎ𝑗𝑗

𝑡𝑡−1)

U Kang 32

Gated Recurrent Unit (GRU)

 Similar to LSTM; the main difference is that in GRU a single gating
unit simultaneously controls the forgetting factor and the
decision to update the state unit
 ℎ𝑖𝑖

(𝑡𝑡) = 𝑢𝑢𝑖𝑖
(𝑡𝑡−1)ℎ𝑖𝑖

(𝑡𝑡−1) + (1 − 𝑢𝑢𝑖𝑖
𝑡𝑡−1)𝜎𝜎(𝑏𝑏𝑖𝑖 + ∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗 𝑟𝑟𝑗𝑗
𝑡𝑡−1 ℎ𝑗𝑗

𝑡𝑡−1)

 𝑢𝑢 stands for “update” gate and 𝑟𝑟 for “reset” gate

 𝑢𝑢𝑖𝑖
(𝑡𝑡) = 𝜎𝜎(𝑏𝑏𝑖𝑖𝑢𝑢 + ∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗𝑢𝑢 𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗
𝑢𝑢 ℎ𝑗𝑗

𝑡𝑡)

 𝑟𝑟𝑖𝑖
(𝑡𝑡) = 𝜎𝜎(𝑏𝑏𝑖𝑖𝑟𝑟 + ∑𝑗𝑗 𝑈𝑈𝑖𝑖,𝑗𝑗𝑟𝑟 𝑥𝑥𝑗𝑗

𝑡𝑡 + ∑𝑗𝑗𝑊𝑊𝑖𝑖,𝑗𝑗
𝑟𝑟 ℎ𝑗𝑗

𝑡𝑡)

 GRU is less complex (computationally efficient) than LSTM while
providing similar accuracy
 GRU uses 2 gates, while LSTM uses 3 gates

U Kang 33

GRU
output

x

update gate

x
1 -

x

reset gate

x: sequence of input

previous hidden state

U Kang 34

Optimization for Long-Term Dependencies

 Gradients of parameters in RNN can be very large due to long-
term dependencies

 When the parameter gradient is very large, a gradient descent
parameter update could throw the parameters very far, into a
region where the objective function is larger, undoing much of
the work that hand been done to reach the current solution

 Gradient clipping: a simple solution that avoids very large
gradient
 2 versions

 Clip the gradient element wise, just before the parameter update
 Clip the norm | 𝑔𝑔 | of the gradient 𝑔𝑔, just before the parameter update

 If 𝑔𝑔 > 𝑣𝑣, then 𝑔𝑔 ← 𝑔𝑔𝑔𝑔
| 𝑔𝑔 | v: norm threshold

U Kang 35

Gradient Clipping

U Kang 36

Networks with Explicit Memory
 Different types of knowledge

 Implicit: sub-conscious, and difficult to verbalize: e.g., how to walk,
how a dog looks different from a cat

 Explicit: declarative, and relatively straightforward to put into words.
E.g., a cat is a kind of animal

 Neural networks excel at storing implicit knowledge.
However, they struggle to memorize facts
 The reason is because neural networks lack the working memory

 Memory networks: include a set of memory cells that can be
accessed via an addressing mechanism

 Neural Turing machine: learns to read from and write
arbitrary content to memory cells without explicit supervision
about which actions to undertake, and allowed end-to-end
training without this supervision signal

U Kang 37

Networks with Explicit Memory

U Kang 38

What you need to know

 Recurrent Neural Network
 Main idea: parameter sharing over time
 Major architectures:
 Problem of long-term dependencies: vanishing or

exploding gradient
 Model that operates at a multiple time scale: LSTM
 Optimization: gradient clipping

U Kang 39

Questions?

	슬라이드 번호 1
	In This Lecture
	RNN
	Classical Dynamical System
	Unfolding Computation Graphs
	Recurrent Hidden Units
	Recurrent through only the Output
	Sequence Input, Single Output
	Teacher Forcing
	Forward/Back Propagation in RNN
	Modeling Sequences Conditioned on Context
	Modeling Sequences Conditioned on Context
	Vector to Sequence
	Hidden and Output Recurrence
	Bidirectional RNN
	Bidirectional RNN
	Sequence to Sequence Architecture
	Sequence to Sequence Architecture
	Sequence to Sequence Architecture
	Deep RNNs
	Deep RNNs
	Recursive Network
	Challenge of Long-Term Dependencies
	Strategies for Long-term Dependencies
	Skip Connections through Time
	Leaky Units
	Removing Connections
	Gated RNNs
	Long Short-Term Memory (LSTM)
	LSTM
	LSTM
	Gated Recurrent Unit (GRU)
	GRU
	Optimization for Long-Term Dependencies
	Gradient Clipping
	Networks with Explicit Memory
	Networks with Explicit Memory
	What you need to know
	슬라이드 번호 39

