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In This Lecture

 Inference as Optimization

 Expectation Maximization

 MAP Inference and Sparse Coding

 Variational Inference and Learning
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Motivation

 Intractable inference problems in deep learning 
are usually the result of interactions between 
latent variables in a structured graphical model. 

 These interactions can be due to edges directly 
connecting one latent variable to another or 
longer paths that are activated when the child of 
a V-structure is observed.
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Motivation

 Left. These direct connections between latent 
variables make the posterior distribution 
intractable since latent variables are dependent.
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Motivation

 Center. It still has an intractable posterior 
distribution because of the connections between 
layers.
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Motivation

 Right. This directed model has interactions 
between latent variables when the visible 
variables are observed, because every two latent 
variables are coparents (V-structure).
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Motivation

 What do we want to do?

 Computing 𝑝(ℎ|𝑣)

 Taking expectations w.r.t. 𝑝(ℎ|𝑣)

 Exact inference requires an exponential amount 
of time in these models.

 Computing 𝑝(𝑣) is intractable!

 We need some approximate inference 
techniques for confronting these intractable 
inference problems.
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Example

 Consider the task of computing 
𝑝 ℎ 𝑣

 If h’s are independent given v, 
p(v) can be efficiently computed

 𝑝 𝑣 = σℎ1,ℎ2
𝑝(𝑣, ℎ1, ℎ2) =

σℎ1,ℎ2
𝑝 𝑣, ℎ1 𝑝(𝑣, ℎ2) =

σℎ1
𝑝 𝑣, ℎ1 σℎ2

𝑝(𝑣, ℎ2)

 Otherwise, p(v) is intractable

ℎ1 ℎ2

𝑣

ℎ1 ℎ2

𝑣
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Outline

Inference as Optimization

Expectation Maximization

MAP Inference

Variational Inference and Learning
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Inference as Optimization

 Exact inference can be described as an 
optimization problem.

 Assume: we have a probabilistic model consisting 
of observed variables 𝑣 and latent variables ℎ.

 Our goal: compute 𝑝 ℎ 𝑣 =
𝑝(𝑣|ℎ)𝑝(ℎ)

𝑝(𝑣)

 It is too difficult to compute 𝑝(𝑣; 𝜃) if it is costly 
to marginalize out ℎ.
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Inference as Optimization

 How to describe the inference problem as the  
optimization problem?

 We compute Evidence Lower BOund (ELBO) instead of 
𝑝(𝑣; 𝜃)

 Evidence Lower Bound (ELBO)

 𝐿 always has at most the same value as the desired log-
probability since the KL divergence is always nonnegative.

 If the KL divergence is 0, 𝑞 is the same as 𝑝(ℎ|𝑣)
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Inference as Optimization

 𝐿 can be considerably easier to compute for some 
distributions 𝑞.

 𝐿 is tractable to compute if we choose appropriate 𝑞.

 For any choice of 𝑞, 𝐿 provides a lower bound on the 
likelihood.

= 𝐸ℎ~𝑞[log 𝑝(ℎ, 𝑣)] + 𝐻(𝑞)
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Inference as Optimization

 For 𝑞(ℎ|𝑣) that are better approximations of 
𝑝(ℎ|𝑣), the lower bound 𝐿 will be tighter.

 We can think of inference as the procedure for 
finding the 𝑞 that maximizes 𝐿. 

 Exact inference maximizes 𝐿 perfectly by 
searching over a family of functions 𝑞 that 
includes 𝑝(ℎ | 𝑣).
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Outline

Inference as Optimization

Expectation Maximization

MAP Inference 

Variational Inference and Learning
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Expectation Maximization

 Now we will maximize a lower bound L by using 
expectation maximization(EM) algorithm.

 What is EM algorithm?

 EM algorithm is an iterative optimization technique
which is operated locally
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Expectation Maximization

 EM algorithm finds maximum likelihood 
parameter estimates in problems where some 
variables were unobserved.

 The EM algorithm consists of alternating 
between two steps until convergence:

 Expectation step

 For given parameter values we can compute the expected 
values of the latent variable.

 Maximization step

 Updates the parameters of our model based on the latent 
variable calculated using ML method.
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Expectation Maximization

 EM can be viewed as a coordinate ascent 
algorithm to maximize L

 E-step: maximize L wrt. q

 M-step: maximize L wrt. 𝜃
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Expectation Maximization

 E-step: maximize L wrt. q

 Set 𝑞(𝑡) ℎ(𝑖)|𝑣 = 𝑝(ℎ 𝑖 |𝑣 𝑖 ; 𝜃(𝑡−1)) for all indices 𝑖

of the training examples 𝑣(𝑖) we want to train on. 

 M-step: maximize L wrt. 𝜃

 Completely or partially maximize

with respect to 𝜃 using your optimization algorithm of 
choice.

𝐿 𝑣, 𝜃, 𝑞 = 𝐸ℎ~𝑞[log 𝑝(ℎ, 𝑣)] + 𝐻(𝑞)
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Another Viewpoint of EM

 Iterate the following E-step and M-step

 E-step: evaluate 𝑝(ℎ|𝑣; 𝜃 𝑡−1 )

 M-step: evaluate 𝜃 𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝜃𝑄 𝜃, 𝜃 𝑡−1

 where 𝑄 𝜃, 𝜃 𝑡−1 = 𝐸ℎ~𝑝(ℎ|𝑣; 𝜃 𝑡−1 )[log 𝑝(ℎ, 𝑣; 𝜃)]
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Example of EM: Gaussian Mixture

 Consider mixtures of Gaussian model

 0 ≤ 𝜋𝑘 ≤ 1,σ𝑘 𝜋𝑘 = 1

K

p(x) πkN (x | μk ,k )
k1

Number of Gaussians
Mixing coefficient: weight for 
each Gaussian dist.



U Kang 21

Gaussian Mixture

 log likelihood

 MLE does not work here as there is no closed 
form solution

 Parameters can be calculated using EM 
algorithm.
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Gaussian Mixture

 We can think of the mixing coefficients as prior  
probabilities for the components.

 For a given value of ‘x’, we can evaluate the  
corresponding posterior probabilities, called  
responsibilities.

 From Bayes rule
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Gaussian Mixture

 Given a Gaussian mixture model, the goal is to 
maximize the likelihood function with respect to 
the parameters comprising the means and 
covariances of the components and the mixing 
coefficients.
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Gaussian Mixture

1. Initialize the means 𝜇, covariances σ and mixing 
coefficients 𝜋, and evaluate the initial value of 
the log likelihood.

2. E step. Evaluate the responsibilities using the 
current parameter values.

j=1
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Gaussian Mixture

3. M step. Re-estimate the parameters using the 
current responsibilities.

4. Evaluate log likelihood

If there is no convergence, return to step 2.
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Gaussian Mixture



U Kang 27

Gaussian Mixture
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Gaussian Mixture
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Gaussian Mixture
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Gaussian Mixture



U Kang 31

Gaussian Mixture
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Questions?


