Photochemical reactions



Light (photon)/matter interactions

* Photon/matter interactions play roles in

— Transformations
e Atmospheric chemistry
* Surface waters
* Water & wastewater treatment (disinfection)
— Analysis
* Light absorption f(A, C,

ompound)

* Photolytic transformations are often non-specific

— Attack bonds & structures resistant to biodegradation & other
pathways
* Growing concern about synthetic chemicals

— Potential for complete mineralization — CO,, H,O, inorganic N & P
— Combine with photocatalysts — visible light catalysis



Light (photon)/matter interactions

Light interact with matter in two
ways
(1) Scattering

» Elastic process (energy of light not
substantially changed)

(2) Absorption
* Capture of the photon

* Moves electron from low energy
(ground) to high energy state
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Basic laws of photochemistry

e Grotthuss-Draper Law (15t law of photochemistry):

Light must be absorbed in order for a photochemical reaction to
take place

 Stark-Einstein Law (2" law of photochemistry):

For each photon of light absorbed by a chemical system, only one
molecule is activated



Photolysis — general

Molecule + photon —— Molecule* —— Products
(direct photolysis)

* Photolysis
— Refers to light induced chemical transformations
— Requires absorption of a photon by a molecule

* Photon absorption
— As a consequence, electrons are excited: may break the covalent bond to
produce a different compound

— Absorptivity typically wavelength & solvent dependent



Photolysis — general

* Light: source of energy

E=hv=h E E = energy of a photon (J/photon)
A h =6.626 x 1034 J-s, Planck constant
v = frequency of light (s?)
¢ = 3.0x 108 m/s, speed of light in a vacuum
A = wavelength of light (m)

On a molar basis,

~ 1.196 x 10°

C
E=602x10%3.h—
A A

kj /einstein

E = energy of light on a molar basis (kJ/einstein)
einstein: 1 mole of photons

A = wavelength of light in nm



Solar flux & absorption
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Bond energies & light absorption

Table 15.1 Typical Energies for Some

Single Bonds and the Approximate e Compare to:
Wavelengths of Light Corresponding to
This Energy 1.196 x 10°
E = k] /einstein
Bond Energy  Wavelength A
E? A
Bond (kJ-mol™) (nm) * Energy of UV/visible light
O-H 465 257 ~ covalent bonds
H-H 436 274 - The covalent bonds may be
C-H 415 288
N_H 390 307 cleaved as a consequence of
C-0O 360 332 UV/visible light absorption
C-C 348 344
C-Cl 339 353
Cl-Cl 243 492
Br-Br 193 620
0-0 146 820

@ Compare Eq. 15-3.” Values from Table 2.2.



Absorbance

* Whether the photochemical reactions will take place depends on

i) The probability with which a given compound absorbs light of a given
wavelength

i) The probability that the excited species undergoes a particular
reaction

« Absorbance: Beer-Lambert law

Iy (1)
I(4)

A(A) = logso = la(D) +&D)G] -1

A = absorbance

I, & I = light intensity at x=0 & /, respectively (e.g., in einstein/cm?-s)

a = absorption coefficient of the solvent (cm™)

g; = molar absorption coefficient for solute i (M*-cm™)

C; = concentration of solute i (M)

[ = path length of light (cm) 9



Absorption spectrum

absorbance A

Absorption spectrum easily measurable by UV-Vis spectrophotometer
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Chromophores & light absorption

Chromophore
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 Chromophore

A structural moiety that
exhibits a characteristic UV/Vis
absorption spectrum
 Delocalized mt electrons are
often good chromophores

* A<290 nm strongly absorbed
in the atmosphere 2 not
significant at natural
conditions

Amax: Maximum absorption wavelength
€: molar extinction coefficient
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compound i
h\.
h at h a p pe ns excitation
[ ’-*
[ ]
absorbs light?
physical processes chemical reactions
® vibrational loss of ® fragmentation
energy (heat transfer) ® Intramolecular rearrangement
@ energy loss of light ® isomerization
emission (luminescence) _
® hydrogen atom abstraction
® energy transfer promoting an A———
electron in another chemical ~ ® dimerization
species (photosensitization) ® electron transfer from or
to the chemical
i product(s)
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When molecule A absorbs a photon

A hv . A%

* Direct photolysis

I |
I |
|

—> ! When the molecule being transformed is i
: the same species that absorbed the photon :

A* — B+C
A*+D — B+ C

* Indirect photolysis

A*+B —— A+C+D : :
A*+B —— A+C+D* : When the molecule being transformed is |

— ey . .
A*¥ + B —— A 4+ B* sen'5|t|zed by other chemlcals in the system
excited by energy from light
B*+C — B+E+F | Tt oooTToTTToooTmTm o m e !
A*+B* —— A+B * Quenching

A species accepts the electronic energy of
the sensitized compound

A*+ M — A+ M




Direct photolysis
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Figure 15.7 Examples of direct
photochemical reaction pathways:
(a) substituted chlorobenzenes, (b)
trifluralin, and (¢) a ketone (from
Mill and Mabey, 1985).

14



Direct photolysis

(c) .
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R R HO . et
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" Figure 15.7 Examples of direct
R, /J'\ + J]\ photochemical reaction pathways:
HO— HO R, Ay (a) substituted chlorobenzenes, (b)
R, trifluralin, and (¢) a ketone (from

Mill and Mabey, 1985).
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Direct photolysis — transformation issues

e Often have multiple pathways after photon absorption
— Multiple products
— Multiple deactivation routes
 Thermal

* Phosphorescence/fluorescence
* |Interactions with solvent/solutes

* Quantum yield, @(1)

— Moles of compound transformed per moles of photons absorbed by
the compound

* Pathway specific or overall yields
— @s are often <<1; 102-10°
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Direct photolysis — transformation issues

* Quantum yield, @(A)

— Quantum yield for reaction pathway j

(number of molecules i reacting by pathway j)

©;(1) = (total number of photons of wavelength A absorbed

by the system owing to the presence of the compound i)

— Reaction quantum yield (for all reaction pathways)

(total number of molecules i transformed)

Cir(A) = (total number of photons of wavelength A absorbed

by the system owing to the presence of the compound i)

— The reaction quantum yield has to determined by experiments
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Direct photolysis — natural water

Io(4)
I(2)
Generally the light absorption by compound i

is much smaller than other constituents in
water

A(A) = logo = la(D) +&D)G] -1
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Direct photolysis — natural water

diffuse and direct
sunlight

a(A) -l = ap(A) * Znpix

ap (1) = diffuse attenuation coeff. (cm™)
Zmix = V /A = depth of mixed water body (cm)

|l + z,;, because: reflection

i) The sunlight is not always B refraction
perpendicular to water surface \/\
i) Light is scattered by suspended o e
particles optically thin
iii) Light is absorbed and then reemitted e : optically thick
by particles and dissolved matter - (>99c£“o‘}'}?3»'§ iﬁﬁﬁmg)
And [ is a function of 1 0 " i

: '_. .
1<1% lar BB
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Direct photolysis — natural water

O I(ZmixA) = Iy(A) - 10~2p (D) Zmix

Define D(A) as:  D(A) = ‘A

Zmix

ap(d) = D(D)a(l)

D(A) = distribution function
For non-turbid water, 1.05~1.3
For very turbid water, up to 2.0

a(A) -- can be determined by spectrophotometer;
D(A) -- can be determined by computer programs at the region of interest
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Direct photolysis — natural water

Out interest: how much light will be absorbed between the depthofOto z,,,
by a pollutant (per volume basis)

1) Rate of light absorption by all species in water (per surface area; in einstein/cm?-s)
= Io(1) = 1(Zmix, A) = Iy(D)[1 — 107D Zmix ]|

2) Rate of light absorption by all species in water (per volume; in einstein/cms3-s)

_ @)

Zmix

[1- 10—aD(/1)-Zmix]
3) Fraction of light absorbed by a pollutant i:
Fi -
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Direct photolysis — natural water

4) Rate of light absorption by compound i per volume:

= (system light absorption, vol. basis) X F;

(D) €;(1)
B Zmix a(A)

[1- 10—0£D(7t)-zmix]

C;

The specific rate of light absorption, I,(4)

Iy(D) - €,(A) - [1 — 10790 W) Zmix]

la(1) = Zmix * a(4)

C;

=k,(A)-C; 1,(2) in einstein/L-s

I(A) in millieinstein/cm?2-s

€;(1) = molar absorption coeff. for compound i (L/mole-cm)
C; = concentration of compound i (mole/L)
k, (1) = specific rate of light absorption (einsten/mole-s)




Direct photolysis — natural water

* The rate of direct photolysis at wavelength A

B <dCi>
dt /,

k, (1) = the direct photolysis 1*-order rate constant at

= @; . (D)1, (1) wavelength A (s*)

= @, (Dky (D The direct photolysis rate

e (DC is in 1%t order only if
p (D g (DC; K a(h)

* The overall rate of direct photolysis

dc,
=-—t= [Z kp()l)] C, = kG,

k,, = the overall direct photolysis 1**-order rate
constant (s)
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Direct photolysis — natural water

* Two limiting cases:
1) Negligible light absorption
(clear lake surface, z,.. small)

mix

ap (A)Zmix < 0.02

1 —10"92WZmix ~ 2.303ap (1) * Zpix

dCi _ 230310(3.) . CKD(A) : Ei()l) . (I)Lr(l)
S dt 2 a (1)

= 2.303

PIACRCICIRE ey ] G,

- kpoCl-

kp0 = near surface photolysis rate (s)

C;
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Direct photolysis — natural water

2) Nearly all light absorbed
(turbid water, z,,, large)

ap(A)Zpmiy = 2

1 —10"9M)Zmix ~ 1

a(A) Zimix l

dc; Iy(D) - €,(A) - D;- (1)
- [2 C

kpt = photolysis rate of optically thick
zone(s?)

diffuse and direct
sunlight

reflection

refraction
Z mix,euph
optically thin =
n

surf7c: I’ayef optically thick

air 5 euphotic zone

(>99% of light absorbed)
=)
L]

— i

- Sl B
1<1% lar BB
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Direct photolysis — natural water

Q: Estimate the 24 h averaged direct photolysis half-life of 4-nitrophenol (4NP)
near the surface of a lake (pH=7.5). Following 24-h averaged near-surface total
specific light absorption rates have been determined for non-dissociated (HA)
and dissociated (A") species (pK, = 7.11):

k,°(HA) = 4.5 x 103 einstein - (mole HA)™* - d !

k,°(A7) = 3.2 x 10* einstein - (mole A~)~1 - d~1
The quantum yields for the two species are as follows (assume the quantum
yields are identical for all wavelengths):

®,.(HA) = 1.1 X 10~* (mole HA) - einstein™?!

@, (A7) = 8.1 x 107° (mole A7) - einstein™?!
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Indirect (sensitized) photolysis

UC: Unknown chromophore

®\_/' ex) colored DOM (CDOM)

\/\ UG — Ro", ROO", 05, H0p, HO" ... | ¢ Singlet oxygen (10,): excited
& 30, state
* Triplet oxygen (30,): ground

UC €~ AN~ —3c* state
S * Photochemically-produced
Oz reactive intermediates
other products (P PR S)
102

Figure 16.2 Pathways for indirect
photolysis of an organic compound
i involving excited natural organic
matter constituents. UC refers to
unknown chromophores. Wavy

arrows symbolize radiationless
transition (adapted from Zafiriou
et al., 1984).
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PPRIs

Products Possible production processes

Singlet Oxygen ‘0, Sensitized by excited DOM

Superoxide anion 0 Photolysis of Fe(III) complexes; deprotonation of HO,'

Hydroperoxyl radical HO,  Uptake from atmosphere, protonation of O,

FlofrpenPenxids H.0. Photolygs of Ee(III) complexes; disproportionation of
“7<  superoxide anion

Ozone O, Uptake from atmosphere

Bl catisdl OH Photolysis of Fe(Ill) complexes, H,0,, NO;, NO, ;

decomposition of O;
Organic peroxy radicals ROO- Photolysis of DOM
Aquated electron e Photolysis of DOM

Adapted from Stumm and Morgan (1996)
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Steady-state concentrations of PPRIs

HO® cw
dw

trop(g)

O3

10 -

HO, /03"

co3

¢33 233 233 ged

—
—
—
-
-
p-

1 1 1 1 | 1 3

16 -14 -122 10 8 6 -4
log concentration / M

Figure 16.1 Ranges of steady-state
concentrations of reactive oxygen
species in sunlit surface waters
(sw), sunlit cloud waters {cw),
drinking-water treatment (dw), and
the troposphere (trop(g)). Data
from Sulzberger et al. (1997) and
Atkinson et al. (1999).
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Reactions with hydroxyl radical
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* Especially important for

advanced oxidation
processes

 Major reaction pathways:

— Electrophilic addition to a
double bond or aromatic ring

— Abstraction of a hydrogen
atom from a carbon atom

Figure 16.3 Second-order rate
constants for reaction with HO" in
aqueous solution (&, uo: Eq. 16-7)
for a series of organic compounds.
Data from http://allen.rad.nd.edu,
and Haag and Yao (1992).
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