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Overview

 So far all the methods have been action-value methods; they learned the 
values of actions and then selected actions based on their estimated 
action values

 Their policies would not even exist without the action-value estimates
 Instead, we consider methods that instead learn a parameterized policy 

which can select actions without consulting a value function
 A value function may still be used to learn the policy parameter, but is 

not required for action selection
 We use the notation 𝜃 ∈ 𝑅𝑑′ for the policy’s parameter vector
 Thus we write 𝜋 𝑎 𝑠, 𝜃 = Pr{𝐴𝑡 = 𝑎|𝑆𝑡 = 𝑠, 𝜃𝑡 = 𝜃} for the probability 

that action a is taken at time t given that the environment is in state s at 
time t with parameter 𝜃

 If a method uses a learned value function as well, then the value 
function’s weight vector is denoted 𝑤 ∈ 𝑅𝑑 as usual, as in ො𝑣(𝑠, 𝑤)
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Overview

 We consider policy gradient methods for learning the policy parameter 
based on the gradient of some scalar performance measure 𝐽(𝜃) with 
respect to the policy parameter

 These methods seek to maximize performance, so their updates 
approximate gradient ascent in 𝐽:


𝛻𝐽(𝜃𝑡) is a stochastic estimate whose expectation approximates the 

gradient of the performance measure with respect to its argument 𝜃𝑡
 All methods that follow this general schema we call policy gradient 

methods, whether or not they also learn an approximate value function
 Methods that learn approximations to both policy and value functions 

are often called actor–critic methods, where ‘actor’ is a reference to the 
learned policy, and ‘critic’ refers to the learned value function, usually a 
state-value function

𝜃𝑡+1 = 𝜃𝑡 + 𝛼 𝛻𝐽(𝜃𝑡)
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Policy Approximation and its 
Advantages

 In policy gradient (PG) methods, the policy can be parameterized in any 
way, as long as 𝜋 𝑎 𝑠, 𝜃 is differentiable with respect to its parameters 
𝜃; i.e., 𝛻𝜃𝜋 𝑎 𝑠, 𝜃 exists and is finite

 In practice, to ensure exploration we generally require that the policy 
never becomes deterministic (i.e., 𝜋 𝑎 𝑠, 𝜃 ∈ (0,1), for all s, a, and 𝜃

 We introduce the most common parameterization for discrete action 
spaces and point out the advantages it offers over action-value 
methods

 Policy-based methods also offer useful ways of dealing with continuous 
action spaces (discussed later in this lecture)
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Policy Approximation and its 
Advantages

 If the action space is discrete and not too large, then a natural and 
common kind of parameterization is to form parameterized numerical 
preferences ℎ(𝑠, 𝑎, 𝜃) ∈ 𝑅 for each state–action pair

 The actions with the highest preferences in each state are given the 
highest probabilities of being selected, for example, according to an 
exponential soft-max distribution:

 The action preferences ℎ(𝑠, 𝑎, 𝜃) can be parameterized arbitrarily
 E.g., ANN (as in AlphaGo)
 E.g., linear: ℎ 𝑠, 𝑎, 𝜃 = 𝜃𝑇𝑥(𝑠, 𝑎), where 𝑥(𝑠, 𝑎) ∈ 𝑅𝑑′ is a feature vector

𝜋 𝑎 𝑠, 𝜃 ሶ=
𝑒ℎ 𝑠,𝑎,𝜃

σ𝑏 𝑒
ℎ 𝑠,𝑏,𝜃



U Kang

Policy Approximation and its 
Advantages

 Advantages of parameterized policies w/ soft-max preferences

 1) The approximate policy can approach a deterministic policy, whereas 
with 𝜖-greedy action selection over action values there is always an 𝜖
probability of selecting a random action

 2) It enables the selection of actions with arbitrary probabilities
 In problems with significant FA, the best approximate policy may be 

stochastic
 E.g., in card games with imperfect information the optimal play is often to 

do two different things with specific probabilities, such as when bluffing in 
Poker

 Action-value methods have no natural way of finding stochastic optimal 
policies, whereas policy approximating methods can
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Example: Short Corridor with 
Switched Actions

 Reward: −1 per step
 Actions: right and left. Note that in the second state the roles of right 

and left are reversed, so that right moves to the left and left moves to 
the right.

 The problem is difficult because all the states appear identical under 
the FA; in particular, we define 𝑥 𝑠, 𝑟𝑖𝑔ℎ𝑡 = [1,0]𝑇 and 𝑥 𝑠, 𝑙𝑒𝑓𝑡 =
[0,1]𝑇, for all s

 An action-value method with 𝜖-greedy action selection is forced to 
choose between just two policies: choosing right with high probability 
1 − 𝜖/2 on all steps or choosing left with the same high probability on 
all time steps

 If 𝜖 = 0.1, then these two policies achieve a value (at the start state) of 
less than −44 and −82, respectively

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Example: Short Corridor with 
Switched Actions

 A method can do significantly better if it can learn a specific probability 
with which to select right

 The best probability is about 0.59, which achieves a value of about 
−11.6 Sutton and Barto, 

Reinforcement 

Learning, 2018
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Policy Approximation and its 
Advantages

 Advantages of parameterized policies w/ soft-max preferences

 3) Compared to action-value parameterization, the policy may be a 
simpler function to approximate
 Problems vary in the complexity of their policies and action-value functions
 For some, the action-value function is simpler and thus easier to 

approximate
 For others, the policy is simpler. In this case a policy-based method will 

typically learn faster and yield a superior asymptotic policy

 4) The choice of policy parameterization is sometimes a good way of 
injecting prior knowledge about the desired form of the policy into the 
RL system
 This is often the most important reason for using a policy-based learning 

method



U Kang

Policy Approximation and its 
Advantages

 Advantages of parameterized policies w/ soft-max preferences

 5) It naturally handles continuous action spaces
 Action-value methods cannot (e.g., 𝜖-greedy)
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The Policy Gradient Theorem

 There is also an important theoretical advantage of policy 
parameterization over 𝜖-greedy action selection

 With continuous policy parameterization the action probabilities 
change smoothly as a function of the learned parameter, whereas in 𝜖 -
greedy selection the action probabilities may change dramatically for 
an arbitrarily small change in the estimated action values, if that 
change results in a different action having the maximal value

 Largely because of this, stronger convergence guarantees are available 
for policy-gradient methods than for action-value methods
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The Policy Gradient Theorem

 For the episodic case, we define the performance measure as the value 
of the start state of the episode

 We can simplify the notation without losing any meaningful generality 
by assuming that every episode starts in some particular (non-random) 
state 𝑠0

 Then, in the episodic case we define performance as

 where 𝑣𝜋𝜃 is the true value function for 𝜋𝜃, the policy determined 
by 𝜃

𝐽 𝜃 ሶ= 𝑣𝜋𝜃(𝑠0)
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The Policy Gradient Theorem

 Policy gradient theorem provides an analytic expression for the 
gradient of performance with respect to the policy parameter 

 Policy gradient theorem

 In the episodic case, the constant of proportionality is the average 
length of an episode, and in the continuing case it is 1, so that the 
relationship is actually an equality

 Intuition of policy gradient
 The contribution of each parameter to the value function is proportional to 

the change of average action value, which is related to the change of action 
probability by the parameter

𝛻J 𝜽 ∝

𝑠

𝜇 𝑠 

𝑎

𝑞𝜋 𝑠, 𝑎 𝛻𝜋(𝑎|𝑠, 𝜽)
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REINFORCE: MC Policy Gradient

 Recall our overall strategy of stochastic gradient ascent requires a way 
to obtain samples such that the expectation of the sample gradient is 
proportional to the actual gradient

 The sample gradients need only be proportional to the gradient 
because any constant of proportionality can be absorbed into the step 
size 𝛼

 The policy gradient theorem gives an exact expression proportional to 
the gradient; all that is needed is some way of sampling whose 
expectation equals or approximates this expression

 The right-hand side of the policy gradient theorem is a sum over states 
weighted by how often the states occur under the target policy 𝜋; if 𝜋 is 
followed, then states will be encountered in these proportions

𝛻J 𝜽 ∝

𝑠

𝜇 𝑠 

𝑎

𝑞𝜋 𝑠, 𝑎 𝛻𝜋(𝑎|𝑠, 𝜽)

𝜃𝑡+1 = 𝜃𝑡 + 𝛼 𝛻𝐽(𝜃𝑡)
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REINFORCE: MC Policy Gradient

 Thus, 

 We could stop here and instantiate our stochastic gradient-ascent 
algorithm as

 where ො𝑞 is some learned approximation to 𝑞𝜋
 This algorithm, called an all-actions method because its update 

involves all of the actions, is promising and deserving of further study
 But our current interest is the classical REINFORCE algorithm (Willams, 

1992) whose update at time t involves just 𝐴𝑡, the one action actually 
taken at time t

𝛻J 𝜽 ∝

𝑠

𝜇 𝑠 

𝑎

𝑞𝜋 𝑠, 𝑎 𝛻𝜋 𝑎 𝑠, 𝜽

= 𝔼𝜋 

𝑎

𝑞𝜋 𝑆𝑡 , 𝑎 𝛻𝜋(𝑎|𝑆𝑡 , 𝜃)

𝜃𝑡+1 ሶ= 𝜃𝑡 + 𝛼

𝑎

ො𝑞 𝑆𝑡 , 𝑎, 𝑤 𝛻𝜋(𝑎|𝑆𝑡 , 𝜃)
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REINFORCE: MC Policy Gradient

 In REINFORCE, 

 The final expression in brackets is exactly what is needed, a quantity 
that can be sampled on each time step whose expectation is equal to 
the gradient

 Using this sample to instantiate our generic stochastic gradient ascent 
algorithm yields the REINFORCE update:

𝛻J 𝜃 = 𝔼𝜋 σ𝑎 𝜋 𝑎 𝑆𝑡 , 𝜃 𝑞𝜋 𝑆𝑡 , 𝑎
𝛻𝜋 𝑎 𝑆𝑡 , 𝜃
𝜋(𝑎|𝑆𝑡,𝜃)

= 𝔼𝜋 𝑞𝜋 𝑆𝑡 , 𝐴𝑡
𝛻𝜋 𝐴𝑡 𝑆𝑡 , 𝜃

𝜋(𝐴𝑡|𝑆𝑡 , 𝜃)
(replacing 𝑎 by the sample At~𝜋)

= 𝔼𝜋 𝐺𝑡
𝛻𝜋 𝐴𝑡 𝑆𝑡 , 𝜃
𝜋(𝐴𝑡|𝑆𝑡,𝜃)

𝜃𝑡+1 ሶ= 𝜃𝑡 + 𝛼𝐺𝑡
𝛻𝜋 𝐴𝑡 𝑆𝑡, 𝜃𝑡
𝜋(𝐴𝑡|𝑆𝑡 , 𝜃𝑡)
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REINFORCE: MC Policy Gradient

 Intuition of REINFORCE
 Each increment is proportional to the product of a return 𝐺𝑡 and a vector, 

the gradient of the probability of taking the action actually taken divided by 
the probability of taking that action

 The vector is the direction in parameter space that most increases the 
probability of repeating the action 𝐴𝑡 on future visits to state 𝑆𝑡

 The update increases the parameter vector in this direction proportional to 
the return, and inversely proportional to the action probability

 The former makes sense because it causes the parameter to move most in 
the directions that favor actions that yield the highest return

 The latter makes sense because otherwise actions that are selected 
frequently are at an advantage (the updates will be more often in their 
direction) and might win out even if they do not yield the highest return

𝜃𝑡+1 ሶ= 𝜃𝑡 + 𝛼𝐺𝑡
𝛻𝜋 𝐴𝑡 𝑆𝑡 , 𝜃𝑡
𝜋(𝐴𝑡|𝑆𝑡 , 𝜃𝑡)
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REINFORCE: MC Policy Gradient

 Note that REINFORCE uses the complete return from time t, which 
includes all future rewards up until the end of the episode

 REINFORCE is an MC algorithm and is well defined only for the episodic 
case with all updates made in retrospect after the episode is completed

Sutton and Barto, 

Reinforcement 

Learning, 2018
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REINFORCE: MC Policy Gradient

 𝛻 ln𝜋(𝐴𝑡|𝑆𝑡, 𝜃𝑡) =
𝛻𝜋(𝐴𝑡|𝑆𝑡,𝜃𝑡)

𝜋(𝐴𝑡|𝑆𝑡,𝜃𝑡)
is called the eligibility vector

 Also note 𝛾 in the algorithm; all of the ideas go through in the 
discounted case

Sutton and Barto, 

Reinforcement 

Learning, 2018
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REINFORCE: MC Policy Gradient

 REINFORCE on the short-corridor gridworld

Sutton and Barto, 

Reinforcement 

Learning, 2018
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REINFORCE: MC Policy Gradient

 As a stochastic gradient method, REINFORCE has good theoretical 
convergence properties

 By construction, the expected update over an episode is in the same 
direction as the performance gradient

 This assures an improvement in expected performance for sufficiently 
small 𝛼, and convergence to a local optimum under standard stochastic 
approximation conditions for decreasing 𝛼

 However, as an MC method REINFORCE may be of high variance and 
thus produce slow learning
 REINFORCE with baseline addresses the problem
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REINFORCE with Baseline

 The policy gradient theorem can be generalized to include a 
comparison of the action value to an arbitrary baseline 𝑏(𝑠):

 The baseline can be any function, even a random variable, as long as it 
does not vary with 𝑎; the equation remains valid because the 
subtracted quantity is zero

 The policy gradient theorem with baseline can be used to derive a new 
version of REINFORCE that includes a general baseline:

𝛻J 𝜃 ∝

𝑎

𝜇 𝑠 

𝑎

𝑞𝜋 𝑠, 𝑎 − 𝑏 𝑠 𝛻𝜋 𝑎 𝑠, 𝜃



𝑎

𝑏 𝑠 𝛻𝜋 𝑎 𝑠, 𝜃 = 𝑏 𝑠 𝛻

𝑎

𝜋 𝑎 𝑠, 𝜃 = 𝑏 𝑠 𝛻1 = 0

𝜃𝑡+1 ሶ= 𝜃𝑡 + 𝛼 𝐺𝑡 − 𝑏 𝑆𝑡
𝛻𝜋 𝐴𝑡 𝑆𝑡 , 𝜃𝑡
𝜋(𝐴𝑡|𝑆𝑡 , 𝜃𝑡)
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REINFORCE with Baseline

 Because the baseline could be uniformly zero, this update is a strict 
generalization of REINFORCE

 In general, the baseline leaves the expected value of the update 
unchanged, but it can have a large effect on its variance

 The baseline can significantly reduce the variance (and thus speed the 
learning)

 The baseline should vary with state in MDPs
 In some states all actions have high values and we need a high 

baseline to differentiate the higher valued actions from the less highly 
valued ones; in other states all actions will have low values and a low 
baseline is appropriate

𝜃𝑡+1 ሶ= 𝜃𝑡 + 𝛼 𝐺𝑡 − 𝑏 𝑆𝑡
𝛻𝜋 𝐴𝑡 𝑆𝑡 , 𝜃𝑡
𝜋(𝐴𝑡|𝑆𝑡 , 𝜃𝑡)
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REINFORCE with Baseline

 One natural choice for the baseline is an estimate of the state value, 
ො𝑣(𝑆𝑡 , 𝑤), where 𝑤 ∈ 𝑅𝑚 is a learned weight vector

 Because REINFORCE is an MC method for learning the policy parameter 
𝜃, it seems natural to also use an MC method to learn the state-value 
weights 𝑤

Sutton and Barto, 

Reinforcement 

Learning, 2018
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REINFORCE with Baseline

 REINFORCE with/ without a baseline on the short-corridor gridworld

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Actor-Critic Methods

 Actor-critic methods
 Learn approximations to both policy and value functions
 Critic: updates action-value function parameter
 Actor: updates policy parameter in direction suggested by critic

 Although the REINFORCE-with-baseline method learns both a policy 
and a state-value function, we do not consider it to be an actor–critic 
method 
 Its state-value function is not used for bootstrapping (updating the value 

estimate for a state from the estimated values of subsequent states), but 
only as a baseline for the state whose estimate is being updated

 The bias introduced through bootstrapping is often beneficial because 
it reduces variance and accelerates learning
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Actor-Critic Methods

 REINFORCE with baseline is unbiased and will converge asymptotically 
to a local minimum, but like all MC methods it tends to learn slowly 
(produce estimates of high variance) and to be inconvenient to 
implement online or for continuing problems

 With TD methods we can eliminate these inconveniences, and through 
multi-step methods we can flexibly choose the degree of bootstrapping

 In order to gain these advantages in the case of policy gradient 
methods we use actor–critic methods with a bootstrapping critic
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Actor-Critic Methods

 First consider one-step actor–critic methods, the analog of the TD 
methods such as TD(0), Sarsa(0), and Q-learning

 The main appeal of one-step methods is that they are fully online and 
incremental, yet avoid the complexities of eligibility traces

 They are a special case of the eligibility trace methods, and not as 
general, but easier to understand

 One-step actor–critic methods replace the full return of REINFORCE 
with the one-step return (and use a learned state-value function as the 
baseline) as follows:

𝜃𝑡+1 ሶ= 𝜃𝑡 + 𝛼 𝐺𝑡:𝑡+1 − ො𝑣(𝑆𝑡 , 𝑤)
𝛻𝜋 𝐴𝑡 𝑆𝑡, 𝜃𝑡
𝜋(𝐴𝑡|𝑆𝑡 , 𝜃𝑡)

= 𝜃𝑡 + 𝛼 𝑅𝑡+1 + 𝛾 ො𝑣(𝑆𝑡+1, 𝑤 − ො𝑣 𝑆𝑡, 𝑤 )
𝛻𝜋 𝐴𝑡 𝑆𝑡 , 𝜃𝑡
𝜋 𝐴𝑡 𝑆𝑡 , 𝜃𝑡

= 𝜃𝑡 + 𝛼𝛿𝑡
𝛻𝜋(𝐴𝑡|𝑆𝑡 , 𝜃𝑡)

𝜋(𝐴𝑡|𝑆𝑡 , 𝜃𝑡)
.
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Actor-Critic Methods

 One-step actor–critic methods replace the full return of REINFORCE 
with the one-step return (and use a learned state-value function as the 
baseline) as follows:

 Actor-critic methods
 Learn approximations to both policy and value functions
 Critic: updates action-value function parameter
 Actor: updates policy parameter in direction suggested by critic

𝜃𝑡+1 ሶ= 𝜃𝑡 + 𝛼 𝐺𝑡:𝑡+1 − ො𝑣(𝑆𝑡 , 𝑤)
𝛻𝜋 𝐴𝑡 𝑆𝑡, 𝜃𝑡
𝜋(𝐴𝑡|𝑆𝑡 , 𝜃𝑡)

= 𝜃𝑡 + 𝛼 𝑅𝑡+1 + 𝛾 ො𝑣(𝑆𝑡+1, 𝑤 − ො𝑣 𝑆𝑡, 𝑤 )
𝛻𝜋 𝐴𝑡 𝑆𝑡 , 𝜃𝑡
𝜋 𝐴𝑡 𝑆𝑡 , 𝜃𝑡

= 𝜃𝑡 + 𝛼𝛿𝑡
𝛻𝜋(𝐴𝑡|𝑆𝑡 , 𝜃𝑡)

𝜋(𝐴𝑡|𝑆𝑡 , 𝜃𝑡)
.
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Actor-Critic Methods

 The natural state-value-function learning method to pair with this is 
semi-gradient TD(0)

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Actor-Critic Methods

 The generalizations to the forward view of n-step methods and then to 
a 𝜆-return algorithm are straightforward. The one-step return 𝐺𝑡:𝑡+1 is 
replaced by 𝐺𝑡:𝑡+𝑛 and 𝐺𝑡𝜆

 The backward view of the 𝜆-return is also straightforward, using 
separate eligibility traces for the actor and critic
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Actor-Critic Methods

 Reminder: eligibility trace
 Offline 𝜆-return:  
 (Online) TD(𝜆):

 Offline one-step actor-critic method:

𝑤𝑡+1 ≐ 𝑤𝑡 + 𝛼 𝐺𝑡
𝜆 − ො𝑣 𝑆𝑡 , 𝑤𝑡 𝛻ොv 𝑆𝑡 , 𝑤𝑡 , 𝑡 = 0, … , 𝑇 − 1

𝑧−1 ≐ 0,

𝑧𝑡 ≐ 𝛾𝜆𝑧𝑡−1 + 𝛻ොv 𝑆𝑡 , 𝑤𝑡 , 0 ≤ 𝑡 ≤ 𝑇

𝛿𝑡 ≐ 𝑅𝑡+1 + 𝛾 ො𝑣 𝑆𝑡+1, 𝑤𝑡 − ො𝑣 𝑆𝑡 , 𝑤𝑡

𝑤𝑡+1 = 𝑤𝑡 + 𝛼𝛿𝑡𝑧𝑡

𝜃𝑡+1 ≐ 𝜃𝑡 + 𝛼 𝑅𝑡+1 + 𝛾 ො𝑣(𝑆𝑡+1, 𝑤 − ො𝑣 𝑆𝑡, 𝑤 )
𝛻𝜋(𝐴𝑡|𝑆𝑡, 𝜃𝑡)

𝜋 𝐴𝑡 𝑆𝑡, 𝜃𝑡
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Actor-Critic Methods

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Policy Gradient for Continuing 
Problems

 For continuing problems w/o episode boundaries we need to define 
the average rate of reward per time step:

 where 𝜇 is the steady-state distribution under 𝜋, 𝜇 𝑠 =
lim𝑡→∞ Pr{𝑆𝑡 = 𝑠|𝐴0:𝑡~𝜋}, which is assumed to exist and to be 
independent of 𝑆0 (an ergodicity assumption)

 This is the special distribution under which, if you select actions 
according to 𝜋, you remain in the same distribution:

𝑟 𝜋 ≐ lim
ℎ→∞

1

ℎ


𝑡=1

ℎ

𝔼 𝑅𝑡|𝑆0, 𝐴0:𝑡−1~𝜋

= lim
𝑡→∞

𝔼 𝑅𝑡 𝑆0, 𝐴0:𝑡−1~𝜋

=

𝑠

𝜇 𝑠 

𝑎

𝜋 𝑎 𝑠 

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟



𝑠

𝜇(𝑠)

𝑎

𝜋 𝑎 𝑠, 𝜃 𝑝 𝑠′ 𝑠, 𝑎 = 𝜇 𝑠′ , 𝑓𝑜𝑟 𝑎𝑙𝑙 𝑠′ ∈ 𝑆
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Policy Gradient for Continuing 
Problems

 Naturally, in the continuing case, we define values, 𝑣𝜋 𝑠 = 𝐸𝜋[𝐺𝑡|𝑆𝑡 =
𝑠] and 𝑞𝜋 𝑠, 𝑎 = 𝐸𝜋[𝐺𝑡|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎], with respect to the differential 
return:

 With these alternate definitions, the policy gradient theorem as given 
for the episodic case remains true for the continuing case

𝐺𝑡 ≐ 𝑅𝑡+1 − 𝑟 𝜋 + 𝑅𝑡+2 − 𝑟 𝜋 + 𝑅𝑡+3 − 𝑟 𝜋 +⋯
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Policy Gradient for Continuing 
Problems

Sutton and Barto, 

Reinforcement 

Learning, 2018
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Policy Parameterization for 
Continuous Actions

 Policy-based methods offer practical ways of dealing with large actions 
spaces, even continuous spaces with an infinite number of actions

 Instead of computing learned probabilities for each of the many 
actions, we instead learn statistics of the probability distribution

 E.g., the action set might be the real numbers, with actions chosen 
from a normal (Gaussian) distribution

Sutton and Barto, 

Reinforcement 

Learning, 2018

𝑝 𝑥 ≐
1

𝜎 2𝜋
exp −

𝑥 − 𝜇 2

2𝜎2
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Policy Parameterization for 
Continuous Actions

 To produce a policy parameterization, the policy can be defined as the 
normal probability density over a real-valued scalar action, with mean 
and standard deviation given by parametric FAs that depend on the 
state. That is,

 where 𝜇: 𝑆 × 𝑅𝑑′ → 𝑅 and 𝜎: 𝑆 × 𝑅𝑑′ → 𝑅+ are two parameterized 
function approximators

𝜋 𝑎 𝑠, 𝜃 ≐
1

𝜎 𝑠, 𝜃 2𝜋
exp −

𝑎 − 𝜇 𝑠, 𝜃
2

2𝜎 𝑠, 𝜃 2
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Policy Parameterization for 
Continuous Actions

 To complete the example we need only give a form for these 
approximators

 For this we divide the policy’s parameter vector into two parts, 𝜃 =
[𝜃𝜇 , 𝜃𝜎]

𝑇, one part to be used for the mean and one part for the 
standard deviation

 The mean can be approximated as a linear function
 The standard deviation must always be positive and is better 

approximated as the exponential of a linear function

 where 𝑥𝜇(𝑠) and 𝑥𝜎(𝑠) are state feature vectors

𝜇 𝑠, 𝜃 ≐ 𝜃𝜇
⊤𝑥𝜇 𝑠 and         𝜎 𝑠, 𝜃 ≐ exp 𝜃𝜎

⊤𝑥𝜎 𝑠
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Policy Parameterization for 
Continuous Actions
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Conclusion

 We considered methods that learn a parameterized policy that enables 
actions to be taken without consulting action-value estimates

 We have considered policy-gradient methods which update the policy 
parameter on each step in the direction of an estimate of the gradient 
of performance with respect to the policy parameter
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Conclusion

 Advantages of policy-gradient methods
 They can learn specific probabilities for taking the actions (finds stochastic 

policies)
 They can learn appropriate levels of exploration and approach deterministic 

policies asymptotically (due to stochastic policy representation)
 They can naturally handle continuous action spaces
 All these things are easy for policy-based methods but awkward or 

impossible for 𝜖-greedy methods and for action-value methods in general
 On some problems the policy is just simpler to represent parametrically 

than the value function
 Theoretical advantage over action-value methods in the form of the policy 

gradient theorem, which gives an exact formula for how performance is 
affected by the policy parameter
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Conclusion

 Disadvantages of policy-gradient methods
 Typically converge to a local minimum, rather than a global optimum
 Slow convergence, since policy improvement is performed in small steps

 REINFORCE: follows directly from the policy gradient theorem
 REINFORCE with baseline: adding a state-value function as a baseline in 

REINFORCE reduces its variance without introducing bias
 Actor-critic methods

 Learn approximations to both policy and value functions
 Critic: updates action-value function parameter
 Actor: updates policy parameter in direction suggested by critic
 Using the state-value function for bootstrapping introduces bias but is often 

desirable for the same reason that bootstrapping TD methods are often 
superior to MC methods (substantially reduced variance)
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Questions?


