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In This Lecture

 Regularization
 Motivation
 Norm penalties and their characteristics
 Dataset augmentation
 Multi-task learning
 Early stopping
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Definition

 A central problem in ML is how to make an 
algorithm that will generalize well

 Regularization: any modification we make to a 
learning algorithm that is intended to reduce its 
generalization error but not its training error

 Most regularization strategies in deep learning are 
based on regularizing estimators, by trading 
increased bias for reduced variance
 An effective regularizer is one that makes a profitable 

trade, reducing variance significantly while not overly 
increasing the bias
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Parameter Norm Penalties

 Limit the capacity of models (e.g. neural networks, 
linear regression, or logistic regression) by adding a 
parameter norm penalty Ω(𝜃𝜃) to the objective 
function 𝐽𝐽
 𝐽𝐽 Θ;𝑋𝑋,𝑦𝑦 = 𝐽𝐽 Θ;𝑋𝑋,𝑦𝑦 + 𝛼𝛼Ω(Θ) where 𝛼𝛼 ∈ [0,∞) is a 

hyperparameter that weights the contribution of Ω
 Small 𝛼𝛼 means less regularization; large 𝛼𝛼 means more 

regularization
 Most common forms: L2 and L1 parameter regularizations 
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L2 Parameter Regularization

 Drives the weights closer to origin by adding a regularization term 
Ω Θ = 1

2
| 𝑤𝑤 |22 to the objective function 

 Also known as ridge regression, Tikhonov regularization, or 
weight decay

 𝐽𝐽 𝑤𝑤;𝑋𝑋,𝑦𝑦 = 𝛼𝛼
2
𝑤𝑤𝑇𝑇𝑤𝑤 + 𝐽𝐽(𝑤𝑤;𝑋𝑋,𝑦𝑦)

 𝛻𝛻𝑤𝑤𝐽𝐽 𝑤𝑤;𝑋𝑋,𝑦𝑦 = 𝛼𝛼𝑤𝑤 + 𝛻𝛻𝑤𝑤𝐽𝐽(𝑤𝑤;𝑋𝑋,𝑦𝑦)
 𝑤𝑤 ← 𝑤𝑤 − 𝜖𝜖 𝛼𝛼𝑤𝑤 + 𝛻𝛻𝑤𝑤𝐽𝐽 𝑤𝑤;𝑋𝑋,𝑦𝑦 = 1 − 𝜖𝜖𝛼𝛼 𝑤𝑤 − 𝜖𝜖𝛻𝛻𝑤𝑤𝐽𝐽(𝑤𝑤;𝑋𝑋,𝑦𝑦)
 This means adding the weight decay term shrinks the weight 

vector by a constant factor on each step, just before performing 
the gradient update
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L2 Parameter Regularization

 Further analysis by making a quadratic approximation to the 
objective function in the neighborhood of the optimal value 𝑤𝑤∗ =
𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑤𝑤𝐽𝐽(𝑤𝑤)
 Note that quadratic approximation of f(y) around x is given by 𝑓𝑓 𝑦𝑦 =

𝑓𝑓 𝑥𝑥 + 𝛻𝛻𝑓𝑓 𝑥𝑥 𝑇𝑇 𝑦𝑦 − 𝑥𝑥 + 1
2
𝑦𝑦 − 𝑥𝑥 𝑇𝑇𝐻𝐻(𝑦𝑦 − 𝑥𝑥)

 𝐽𝐽 𝑤𝑤 = 𝐽𝐽 𝑤𝑤∗ + 1
2

(𝑤𝑤 − 𝑤𝑤∗)𝑇𝑇𝐻𝐻(𝑤𝑤 − 𝑤𝑤∗) where 𝐻𝐻 is the Hessian matrix of 
𝐽𝐽 with respect to 𝑤𝑤 evaluated at 𝑤𝑤∗

 𝐻𝐻 is positive semidefinite since 𝑤𝑤∗ is the location of a minimum of 𝐽𝐽
 The minimum of 𝐽𝐽 occurs where the gradient 𝛻𝛻𝑤𝑤𝐽𝐽 𝑤𝑤 = 𝐻𝐻(𝑤𝑤 − 𝑤𝑤∗) equals 

0

 Let �𝑤𝑤 be the location of the minimum of the function 𝐽𝐽 𝑤𝑤 + 𝛼𝛼
2
𝑤𝑤𝑇𝑇𝑤𝑤

 Then, 𝛼𝛼�𝑤𝑤 + 𝐻𝐻 �𝑤𝑤 − 𝑤𝑤∗ = 0 ↔ 𝐻𝐻 + 𝛼𝛼𝐼𝐼 �𝑤𝑤 = 𝐻𝐻𝑤𝑤∗

 Thus, �𝑤𝑤 = (𝐻𝐻 + 𝛼𝛼𝐼𝐼)−1𝐻𝐻𝑤𝑤∗
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L2 Parameter Regularization

 Using eigendecomposition 𝐻𝐻 = 𝑄𝑄Λ𝑄𝑄𝑇𝑇

�𝑤𝑤 = (𝐻𝐻 + 𝛼𝛼𝐼𝐼)−1𝐻𝐻𝑤𝑤∗ = (𝑄𝑄Λ𝑄𝑄𝑇𝑇 + 𝛼𝛼𝐼𝐼)−1𝑄𝑄Λ𝑄𝑄𝑇𝑇𝑤𝑤∗

= [𝑄𝑄(Λ + 𝛼𝛼𝐼𝐼)𝑄𝑄𝑇𝑇]−1𝑄𝑄Λ𝑄𝑄𝑇𝑇𝑤𝑤∗ = 𝑄𝑄(Λ + 𝛼𝛼𝐼𝐼)−1Λ𝑄𝑄𝑇𝑇𝑤𝑤∗

 The effect of weight decay is to rescale 𝑤𝑤∗ along the axes defined 
by the eigenvectors of H

 The component of 𝑤𝑤∗ that is aligned with the i-th eigenvector of 
H is rescaled by a factor of 𝜆𝜆𝑖𝑖

𝜆𝜆𝑖𝑖+𝛼𝛼

 Along the directions where eigenvalues of H are relatively large, 
e.g. 𝜆𝜆𝑖𝑖 ≫ 𝛼𝛼, the effect of regularization is relatively small

 Components with 𝜆𝜆𝑖𝑖 ≪ 𝛼𝛼 will be shrunk to have nearly zero 
magnitude 
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L2 Parameter Regularization

 The regularization shrinks w* more along the direction where the 
objective function does not decrease significantly
 That is, along the direction which is an eigenvector of H with a small 

eigenvalue (the second derivative along the direction of an eigenvector 𝑞𝑞𝑖𝑖
(with eigenvalue 𝜆𝜆𝑖𝑖) is given by 𝑞𝑞𝑖𝑖𝑇𝑇𝐻𝐻𝑞𝑞𝑖𝑖 = 𝜆𝜆𝑖𝑖)



U Kang 9

L1 Parameter Regularization

 Use regularization term Ω Θ = | 𝑤𝑤 |1 = ∑𝑖𝑖 |𝑤𝑤𝑖𝑖|
 L1 regularization results in a solution that is more sparse

 Some parameters have an optimal value of 0

 L1 regularization has been used extensively as a feature selection 
mechanism
 LASSO: least square with L1 regularization term

L1

regularization
L2

regularization

[The Elements of 
Stat. Learning
by Hastie et al.]
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Dataset Augmentation

 The best way to make a machine learning model generalize 
better is to train it on more data

 Dataset augmentation
 Create fake data and add it to the training set
 Has been effective especially for object recognition

 Image augmentation
 Translation
 Rotation
 Scaling

 Injecting noise: a form of data augmentation
 Neural networks are not very robust to noise; one way to improve the 

robustness of neural networks is to train them with random noise 
applied to their inputs



U Kang 11

Dataset Augmentation
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Multi-Task Learning
 Multi-task learning is a way to improve 

generalization by sharing the parameters 
arising out of several tasks

 Main idea: among the factors that explain 
the variations observed in the data 
associated with the different tasks, some 
are shared across two or more tasks

 The lower layers of a deep network can 
be shared across tasks, while specific 
parameters (connected to 𝒉𝒉(1), 𝒉𝒉(2), and 
𝒉𝒉(3)) can be learned on top of those 
yielding a shared representation 
𝒉𝒉(𝑠𝑠ℎ𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎)
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Early Stopping
 When training large models with sufficient representational capacity to 

overfit the task, we often observe that training error decreases steadily 
over time, but validation set error begins to rise again.

 Early stopping: obtain a model with better validation set error (and thus 
hopefully better test error) by returning to the parameter setting at the 
point in time with the lowest validation set error
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Early Stopping

 Early stopping is a very unobtrusive form of regularization, 
meaning that it is easy to apply early stopping to any ML 
algorithm

 Early stopping may be used either alone or in conjunction 
with other regularization strategies

 Early stopping also reduces the computational cost of the 
training procedure
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Early Stopping and Weight Decay
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What you need to know

 Regularization
 Motivation

 Make an algorithm that will generalize well

 Norm penalties and their characteristics
 L2: shrinks parameters more along the direction where the 

objective function does not decrease significantly
 L1: lead to sparse solutions

 Dataset augmentation
 Multi-task learning
 Early stopping

 General and widely applicable approach
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Questions?
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