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MAP Inference

m |[f we wish to develop a learning process based on
maximizing L(v, h, q), then it is helpful to think of
MAP inference as a procedure that provides a
value of q.

m What is MAP inference?
o Finds the most likely value of a variable

h™ = argmax p(h | v)
h
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K MAP Inference

m Exact inference consists of maximizing
L(v,0,q) = En~q [logp(h,v)] + H(q)

with respect to g over an unrestricted family of
probability distributions, using an exact
optimization algorithm.

m We restrict the family of distributions of q to take
on a Dirac distribution ¢q(h |v) =0(h — p)

5(m)={:}:m’ i;g f_ §(z)de =1

oo
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MAP Inference

m We can now control g entirely via u. Dropping
terms of L that do not vary with u, we are left with

the optimization problem
© = argmax logp(h = p, v)
7
which is equivalent to the MAP inference problem

h™ = argmax p(h | v)
h

ELBO:
L(v,0,q) =Epq logp(h,v)] + H(q)
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s MAP Inference

m Thus, we can think of the following algorithm for
maximizing ELBO, which is similar to EM

o Alternate the following two steps

m Perform MAP inference to infer h* while fixing 6
m Update 6 to increase log p(h*, v)

ELBO:
L(v,0,q) =Epq logp(h,v)] + H(q)
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= Previously

m Lower bound L
0 Inference=max L w.r.t. q
0 Learning=max L w.r.t. 6

o EM algorithm -> allows us to make large learning steps
with fixed g

o MAP inference enable us to learn using a point of
estimate rather than inferring the entire distribution
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Variational Methods
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m We want to do the following:

a Given this surveillance footage X, did the suspect show
up in it?

o Given this twitter feed X, is the author depressed?

m Problem: cannot compute P(z]|x)
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K Variational Methods

m |ldea:

o Allow us to re-write statistical inference problems as
optimization problems
m Statistical inference = infer value of RV given another

m  Optimization problem = find the parameter values that
minimize cost function

U Kang
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m Key idea: We can maximize L over a restricted
family of distributions g

0 Listhe lower bound of logp(v; 0)

o Chose family such that Ey.,[log p(h,v)]| is easy to
compute.

o Typically: impose that g is a factorial distribution
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= The Mean field approach
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m qis a factorial distribution ¢(h | v) Hq hi | v)

a0 where h; are independent (and thus g(h|v) cannot
match the true distribution p(h|v))

m Advantage: no need to specify parametric form
for q.

o The optimization problem determines the optimal
probability under the constraints

U Kang
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— Discrete Latent Variable

m The goal is to maximize ELBO:
£(v.6.4) = Envg [log p(h.v)] + H(q)

m |n the mean field approach, we assume q is a
factorial distribution
g(h | v) =] q(hi | v)

= We can parameterize g with a vector h whose
entries are probabilities; then g(h; = 1|v) = h;

= Then, we simply optimize the parameters h by
any standard optimization technique (e.g.,
gradient descent)

U Kang
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e Recap

p(v|h)p(h)
p(v)

m However, exact inference requires an exponential
amount of time in these models

m Inference is to compute p(hlv) —

0 Computing p(v) is intractable

m Approximate inference is needed

U Kang 15
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Recap

m We compute Evidence Lower Bound (ELBO)
instead of p(v).

m ELBO: L(v,0,q) =logp(v;0) — Dk (q(h [ v)|[p(h | v:6))

o After rearranging the equation,

ﬁ(’U, 0. (]) — Ehmq' [logp(h_. ’U)} T H(Q)

0 For any choice of g, L provides a lower bound.
o If we take g equals to p, we can get p(v) exactly.
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= Calculus of Variations

m In machine learning, minimizing a function J(0)
by finding the input vector 8 € R™ is the purpose.

m This can be accomplished by solving for the
critical points where VyJ(6) = 0.

U Kang 17



Calculus of Variations

But in some cases, we actually want to solve for a
function f (x).

Calculus of variations is a method of finding the
critical points w.r.t f (x).

A function of a function f is functional J[f].

We can take functional derivatives (a.k.a.
variational derivatives), of J|f] with respect to
individual values of the function f(x) at any
specific value of x.

]

) .. . )
Functional derivatives is denoted
5f (x)
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Calculus of Variations

m Euler-Lagrange equation (simplified form)
o Consider a functional J(f) = fg(f(x) x) dx. Extreme point

0 (Proof) Assume we change f by the amount of € - n(x) by an
arbitrary function n(x) . Then, J(f (x) + En(x)) =

fg(f(X) + en(x),x) dx = [[g(f(x),x) + EU(X)]
J+ ef n(x) dx
m =:Use y(x1 + €1y, Xp + €p) = y(Xq, o, Xp) + X 1a > ¢; + 0(e?)

o Note that at the extreme point,](f + en(x)) = J, which
implies fg—‘?n(x) = 0. Since this is true for any n(x), g_i =

of | is given by the condition

U Kang 19
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Calculus of Variations

L(v,0,q) = Ep~q [logp(h,v)] + H(q)
0 H(q) = — [ q(x)logq(x) dx
We want to maximize L.

So we have to find the g which becomes a critical
point of L

Find L=0

5q(x)

U Kang 20



= Example

m Consider the problem of finding the probability
distribution function over x € R that has the
maximal differential entropy H(p) =
— [ p(x) log p(x) dx among the distribution with
E(x) = pwand Var(x) = o*

0 l.e., the problem is to find p(x) to maximize H(p) =
— [ p(x)logp(x) dx, such that

m p(x)integratesto 1

m E(x)=u

s Var(x) = o?
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Lagrange Multipliers

m How to maximize (or minimize) a function with
equality constraint?

m Lagrange multipliers

0 Problem: maximize f(x) when g(x)=0 V)

XA

o Solution

m Ais called Lagrange multiplier

Maximize L(x,1) = f(x) + A g(x)

We find x and A s.t. 7L = 0 and 5= = 0

0 V.f(x)andV,g(x) are orthogonal to the surface g(x)=0; thus
V.f (x) = —AV,.g(x) for some A

oL
Q== 0 leads to g(x)=0

U Kang 22
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Calculus of Variations

m Goal: find p(x) which maximizes H(p) =
— [p(x)logp(x)dx,st. [p(x)dx =1, E(x) =
i, and Var(x) = ¢*

m Using Lagrange multiplier, we maximize
Llpl =\ ( / p(x)dx — 1) + X2 (E[x] — p)+ A3 (E[(z — p)?] — o*) + H[p]

= / (Mp(x) + dep(x)z + dap(x)(z — p)? — p(z) log p(r)) dr — A\ — piAa — o \3.

U Kang 23



Calculus of Variations

We set the functional derivatives equal to O:

) . .
Vo, —— [ = M+ dox+ Mz — pw)?—1—logp(x) =0.
op(x)

We obtain p(x) = exp (A1 + Aoz + A3(x — 1) — 1).
We are free to choose Lagrange multipliers as long as
[p(x)dx =1,E(x) = u,and Var(x) = o*
We may set the followings.

A = l—lngr_r\/ﬁ Ao =0 )‘3:—2{},9

Then, we obtain p(x) = N (x; . 0%).

This is one reason for using the normal distribution
when we do not know the true distribution.
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Continuous Latent Variables

= When our model contains continuous latent
variables, we can perform variational inference by
maximizing L using calculus of variations.

= If we make the mean field approximation, q(h|v) =
[1; q(h;lv), and fix g(h;|v) for all i # j, then the
optimal q(hj‘v) can be obtained by normalizing the
unnormalized distribution

G(hy|v) = exp(E n_~a(h_j|v) logp (h,v))

m Thus, we apply the above equation iteratively for
each value of j until convergence

U Kang 26
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*> Proof of Mean Field Approximation

= (claim) Assuming q(h|v) = [I; q(h;|v), the optimal q(hj|v) is given by
normalizing the unnormalized distribution q(hj|v) =
exp(Eh_qu(h_j|v) logp (h,v))

= (proof) Note that ELBO = Ej, .4 [logp(h, v)] + H(q), and q(h|v) = [; q; (h;|v).

o Thus, ELBO = [ [1;q; Qogp(h, v)) dh — [ (I1;4:)og[1; q;) dh =
[ q; {J logp(h,v) (INix 9i dhi)} dhj — [(I1;q:) (X log a:)dh
o If we take out terms related to g, then ELBO becomes
I q; Ep_;(logp(h,v))dh; — J q;logq; dh; + const

= [ q; logp*(h;,v)dhj — [ q;logq; dh; + const (1)
m  where p*(hj, v) is a prob. distribution and log p*(h;, v) = Eh_j(log p(h,v)) + const

o Note that (1) is negative KL divergence -Dg; (q;||p*(h;, v)); thus, the best g;
maximizing ELBO is given by q; = p*(h;, v).

2 Inthatcase, logq; = logp*(h;,v) = Eh_j(logp(h, v)) + const. Thus, q;
exp (Eh_j (logp(h, v))) = exp(Eh_j~q(h_j|v) logp (h,v))
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= What you need to know
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m Inference as Optimization
m Expectation Maximization
m MAP Inference and Sparse Coding
m Variational Inference and Learning
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Questions?
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