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MAP Inference

 If we wish to develop a learning process based on 
maximizing 𝐿(𝑣, ℎ, 𝑞), then it is helpful to think of 
MAP inference as a procedure that provides a 
value of 𝑞.

 What is MAP inference?

 Finds the most likely value of a variable
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MAP Inference

 Exact inference consists of maximizing

 with respect to q over an unrestricted family of 
probability distributions, using an exact 
optimization algorithm.

 We restrict the family of distributions of q to take 
on a Dirac distribution



U Kang 5

MAP Inference

 We can now control 𝑞 entirely via µ. Dropping 
terms of 𝐿 that do not vary with µ, we are left with 
the optimization problem

which is equivalent to the MAP inference problem

ELBO:
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MAP Inference

 Thus, we can think of the following algorithm for 
maximizing ELBO, which is similar to EM

 Alternate the following two steps

 Perform MAP inference to infer h* while fixing 𝜃

 Update 𝜃 to increase log p(h*, v)

ELBO:
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Previously

 Lower bound L

 Inference = max L   w.r.t.  q

 Learning = max L w.r.t. θ

 EM algorithm -> allows us to make large learning steps 
with fixed q

 MAP inference enable us to learn using a point of 
estimate rather than inferring the entire distribution
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Variational Methods

 We want to do the following:

 Given this surveillance footage X, did the suspect show 
up in it?

 Given this twitter feed X, is the author depressed?

 Problem: cannot compute P(z|x)
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Variational Methods

 Idea:

 Allow us to re-write statistical inference problems as 
optimization problems

 Statistical inference = infer value of RV given another

 Optimization problem = find the parameter values that 
minimize cost function

 Bridge between optimization and statistical 
techniques
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Variational Learning

 Key idea: We can maximize L over a restricted 
family of distributions q

 L is the lower bound of log 𝑝(𝑣; 𝜃)

 Chose family such that                                    is easy to 
compute.

 Typically: impose that q is a factorial distribution
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The Mean field approach

 q is a factorial distribution 

 where ℎ𝑖 are independent (and thus q(h|v) cannot 
match the true distribution p(h|v))

 Advantage: no need to specify parametric form 
for q.

 The optimization problem determines the optimal 
probability under the constraints
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Discrete Latent Variable

 The goal is to maximize ELBO:

 In the mean field approach, we assume q is a 
factorial distribution 

 We can parameterize q with a vector ෠ℎ whose 

entries are probabilities; then 𝑞 ℎ𝑖 = 1 𝑣) = ෡ℎ𝑖

 Then, we simply optimize the parameters ෠ℎ by 
any standard optimization technique (e.g., 
gradient descent)
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Recap

 Inference is to compute  𝑝 ℎ 𝑣 =
𝑝(𝑣|ℎ)𝑝(ℎ)

𝑝(𝑣)

 However, exact inference requires an exponential 
amount of time in these models

 Computing 𝑝(𝑣) is intractable

 Approximate inference is needed
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Recap

 We compute Evidence Lower Bound (ELBO) 
instead of 𝑝(𝑣).

 ELBO:

 After rearranging the equation,

 For any choice of 𝑞, 𝐿 provides a lower bound.

 If we take 𝑞 equals to 𝑝, we can get 𝑝(𝑣) exactly.
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Calculus of Variations

 In machine learning, minimizing a function 𝐽(𝜃)
by finding the input vector 𝜃 ∈ 𝑅𝑛 is the purpose.

 This can be accomplished by solving for the 
critical points where 𝛻𝜃𝐽 𝜃 = 0.
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Calculus of Variations

 But in some cases, we actually want to solve for a 
function 𝑓(𝑥).

 Calculus of variations is a method of finding the 
critical points w.r.t 𝑓(𝑥).

 A function of a function 𝑓 is functional 𝐽[𝑓].

 We can take functional derivatives (a.k.a. 
variational derivatives), of 𝐽[𝑓] with respect to 
individual values of the function 𝑓(𝑥) at any 
specific value of 𝑥.

 Functional derivatives is denoted 
𝛿

𝛿𝑓(𝑥)
𝐽.
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Calculus of Variations

 Euler-Lagrange equation (simplified form)
 Consider a functional 𝐽 𝑓 = 𝑔׬ 𝑓 𝑥 , 𝑥 𝑑𝑥. Extreme point 

of 𝐽 is given by the condition 
𝜕

𝜕𝑓(𝑥)
𝑔 𝑓 𝑥 , 𝑥 = 0

 (Proof) Assume we change f by the amount of 𝜖 ∙ 𝜂(𝑥) by an 
arbitrary function 𝜂(𝑥) . Then, 𝐽 𝑓(𝑥) + 𝜖𝜂 𝑥 =

𝑔׬ 𝑓 𝑥 + 𝜖𝜂 𝑥 , 𝑥 𝑑𝑥 = 𝑔]׬ 𝑓 𝑥 , 𝑥 +
𝜕𝑔

𝜕𝑓
𝜖𝜂 𝑥 ] 𝑑𝑥 =

𝐽 + 𝜖 ׬
𝜕𝑔

𝜕𝑓
𝜂 𝑥 𝑑𝑥

 =: Use 𝑦 𝑥1 + 𝜖1, … , 𝑥𝐷 + 𝜖𝐷 = 𝑦 𝑥1, … , 𝑥𝐷 + σ𝑖=1
𝐷 𝜕𝑦

𝜕𝑥𝑖
𝜖𝑖 + 𝑂(𝜖2)

 Note that at the extreme point, 𝐽 𝑓 + 𝜖𝜂 𝑥 = 𝐽, which 

implies ׬
𝜕𝑔

𝜕𝑓
𝜂 𝑥 = 0. Since this is true for any 𝜂 𝑥 , 

𝜕𝑔

𝜕𝑓
= 0.
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Calculus of Variations



 𝐻 𝑞 = 𝑞(𝑥)׬− log 𝑞(𝑥) 𝑑𝑥

 We want to maximize 𝐿.

 So we have to find the 𝑞 which becomes a critical 
point of L

 Find 
𝛿

𝛿𝑞(𝑥)
𝐿=0
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Example

 Consider the problem of finding the probability 
distribution function over 𝑥 ∈ 𝑅 that has the 
maximal differential entropy 𝐻 𝑝 =
− 𝑝׬ 𝑥 log 𝑝(𝑥) 𝑑𝑥 among the distribution with 

𝐸 𝑥 = 𝜇 and 𝑉𝑎𝑟 𝑥 = 𝜎2

 I.e., the problem is to find 𝑝 𝑥 to maximize 𝐻 𝑝 =
− 𝑝׬ 𝑥 log 𝑝(𝑥) 𝑑𝑥, such that

 p(x) integrates to 1

 𝐸 𝑥 = 𝜇

 𝑉𝑎𝑟 𝑥 = 𝜎2
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Lagrange Multipliers

 How to maximize (or minimize) a function with 
equality constraint? 

 Lagrange multipliers

 Problem: maximize f(x) when g(x)=0

 Solution
 Maximize L(𝑥, 𝜆) = 𝑓(𝑥) + 𝜆 · 𝑔(𝑥)

 𝜆 is called Lagrange multiplier

 We find x and 𝜆 s.t. 𝛻𝑥𝐿 = 0 and 
𝜕𝐿

𝜕𝜆
= 0

 𝛻𝑥𝑓(𝑥) and 𝛻𝑥𝑔(𝑥) are orthogonal to the surface g(x)=0; thus 
𝛻𝑥𝑓 𝑥 = −𝜆 𝛻𝑥𝑔(𝑥) for some 𝜆



𝜕𝐿

𝜕𝜆
= 0 leads to g(x)=0
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Calculus of Variations

 Goal: find 𝑝 𝑥 which maximizes 𝐻 𝑝 =
− 𝑝׬ 𝑥 log 𝑝(𝑥) 𝑑𝑥, s.t. ׬ 𝑝(𝑥) 𝑑𝑥 = 1, 𝐸 𝑥 =

𝜇, and 𝑉𝑎𝑟 𝑥 = 𝜎2

 Using Lagrange multiplier, we maximize
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Calculus of Variations

 We set the functional derivatives equal to 0:

 We obtain

 We are free to choose Lagrange multipliers as long as 

𝑝(𝑥)׬ 𝑑𝑥 = 1, 𝐸 𝑥 = 𝜇, and 𝑉𝑎𝑟 𝑥 = 𝜎2

 We may set the followings.

 Then, we obtain

 This is one reason for using the normal distribution 
when we do not know the true distribution.
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Continuous Latent Variables

 When our model contains continuous latent 
variables, we can perform variational inference by 
maximizing 𝐿 using calculus of variations.

 If we make the mean field approximation, 𝑞 ℎ 𝑣 =
ς𝑖 𝑞 ℎ𝑖 𝑣 , and fix 𝑞 ℎ𝑖 𝑣 for all 𝑖 ≠ 𝑗, then the 

optimal 𝑞 ℎ𝑗 𝑣 can be obtained by normalizing the 

unnormalized distribution

 Thus, we apply the above equation iteratively for 
each value of j until convergence

෤𝑞 ℎ𝑗 𝑣 = exp(𝐸
ℎ−𝑗~𝑞 ℎ−𝑗 𝑣

log 𝑝 ℎ, 𝑣 )
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Proof of Mean Field Approximation

 (claim) Assuming 𝑞 ℎ 𝑣 = ς𝑖 𝑞 ℎ𝑖 𝑣 , the optimal 𝑞 ℎ𝑗 𝑣 is given by 
normalizing the unnormalized distribution ෤𝑞 ℎ𝑗 𝑣 =
exp(𝐸

ℎ−𝑗~𝑞 ℎ−𝑗 𝑣
log 𝑝 ℎ, 𝑣 )

 (proof) Note that ELBO = 𝐸ℎ~𝑞 log 𝑝 ℎ, 𝑣 + 𝐻(𝑞), and 𝑞 ℎ 𝑣 = ς𝑖 𝑞𝑖(ℎ𝑖|𝑣). 

 Thus, ELBO = ׬ς𝑖 𝑞𝑖 (log 𝑝(ℎ, 𝑣)) 𝑑ℎ − ς𝑖)׬ 𝑞𝑖)(logς𝑖 𝑞𝑖) 𝑑ℎ =

𝑞𝑗׬ ׬} log 𝑝 ℎ, 𝑣 (ς𝑖≠𝑗 𝑞𝑖 𝑑ℎ𝑖)} 𝑑ℎ𝑗 − ς𝑖)׬ 𝑞𝑖)(σ𝑖 log 𝑞𝑖)𝑑ℎ

 If we take out terms related to 𝑞𝑗, then ELBO becomes 

𝑞𝑗׬ 𝐸ℎ−𝑗(log 𝑝(ℎ, 𝑣))𝑑ℎ𝑗 − 𝑞𝑗׬ log 𝑞𝑗 𝑑ℎ𝑗 + 𝑐𝑜𝑛𝑠𝑡

= 𝑞𝑗׬ log 𝑝∗(ℎ𝑗 , 𝑣) 𝑑ℎ𝑗 − 𝑞𝑗׬ log 𝑞𝑗 𝑑ℎ𝑗 + 𝑐𝑜𝑛𝑠𝑡

 where 𝑝∗(ℎ𝑗 , 𝑣) is a prob. distribution and log 𝑝∗(ℎ𝑗 , 𝑣) = 𝐸ℎ−𝑗 log 𝑝 ℎ, 𝑣 + 𝑐𝑜𝑛𝑠𝑡

 Note that (1) is negative KL divergence -𝐷𝐾𝐿(𝑞𝑗||𝑝
∗(ℎ𝑗 , 𝑣)); thus, the best 𝑞𝑗

maximizing ELBO is given by  𝑞𝑗 = 𝑝∗(ℎ𝑗 , 𝑣). 

 In that case, log 𝑞𝑗 = log𝑝∗(ℎ𝑗 , 𝑣) = 𝐸ℎ−𝑗 log 𝑝 ℎ, 𝑣 + 𝑐𝑜𝑛𝑠𝑡. Thus, 𝑞𝑗 ∝

exp 𝐸ℎ−𝑗 log 𝑝 ℎ, 𝑣 = exp(𝐸
ℎ−𝑗~𝑞 ℎ−𝑗 𝑣

log 𝑝 ℎ, 𝑣 )

(1)
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What you need to know

 Inference as Optimization

 Expectation Maximization

 MAP Inference and Sparse Coding

 Variational Inference and Learning
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Questions?


