

Advanced Deep Learning

Approximate Inference-2

U Kang Seoul National University

U Kang

Outline

- ☑ Inference as Optimization
- Expectation Maximization
- ➡ □ MAP Inference
 - Variational Inference and Learning

- If we wish to develop a learning process based on maximizing L(v, h, q), then it is helpful to think of MAP inference as a procedure that provides a value of q.
- What is MAP inference?
 Finds the most likely value of a variable

$$h^* = \operatorname*{arg\,max}_{h} p(h \mid v)$$

Exact inference consists of maximizing

 $\mathcal{L}(\boldsymbol{v}, \boldsymbol{\theta}, q) = \mathbb{E}_{\mathbf{h} \sim q} \left[\log p(\boldsymbol{h}, \boldsymbol{v}) \right] + H(q)$

with respect to q over an unrestricted family of probability distributions, using an exact optimization algorithm.

• We restrict the family of distributions of q to take on a Dirac distribution $q(h \mid v) = \delta(h - \mu)$

$$\delta(x) = egin{cases} +\infty, & x=0 \ 0, & x
eq 0 \ \end{cases} \quad \int_{-\infty}^\infty \delta(x)\,dx = 1$$

U Kang

 We can now control q entirely via μ. Dropping terms of L that do not vary with μ, we are left with the optimization problem

$$\mu^* = \underset{\mu}{\operatorname{arg\,max}} \log p(h = \mu, v)$$

which is equivalent to the MAP inference problem

$$\boldsymbol{h}^* = \operatorname*{arg\,max}_{\boldsymbol{h}} p(\boldsymbol{h} \mid \boldsymbol{v})$$

ELBO:

$$\mathcal{L}(\boldsymbol{v}, \boldsymbol{\theta}, q) = \mathbb{E}_{\mathbf{h} \sim q} \left[\log p(\boldsymbol{h}, \boldsymbol{v}) \right] + H(q)$$

- Thus, we can think of the following algorithm for maximizing ELBO, which is similar to EM
 - Alternate the following two steps
 - Perform MAP inference to infer h* while fixing θ
 - Update θ to increase log p(h*, v)

ELBO:

$$\mathcal{L}(\boldsymbol{v}, \boldsymbol{\theta}, q) = \mathbb{E}_{\mathbf{h} \sim q} \left[\log p(\boldsymbol{h}, \boldsymbol{v}) \right] + H(q)$$

Outline

- ☑ Inference as Optimization
- Expectation Maximization
- MAP Inference
- Variational Inference and Learning
 - Discrete Latent Variables

Calculus of Variations

Continuous Latent Variables

Lower bound L

- Inference = max L w.r.t. q
- Learning = max L w.r.t. θ
- EM algorithm -> allows us to make large learning steps with fixed q
- MAP inference enable us to learn using a point of estimate rather than inferring the entire distribution

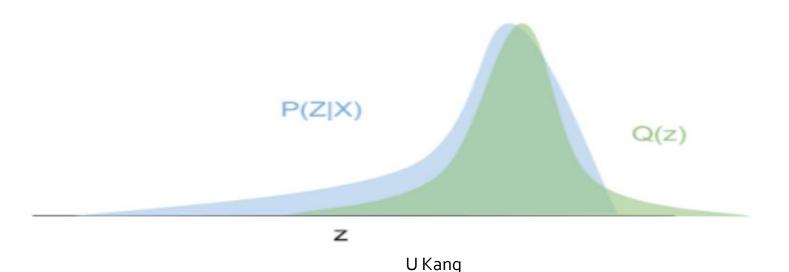
Variational Methods

- We want to do the following:
 - Given this surveillance footage X, did the suspect show up in it?
 - Given this twitter feed X, is the author depressed?
- Problem: cannot compute P(z|x)

Variational Methods

Idea:

- Allow us to re-write *statistical inference* problems as optimization problems
 - Statistical inference = infer value of RV given another
 - Optimization problem = find the parameter values that minimize cost function



Variational Learning

- Key idea: We can maximize L over a restricted family of distributions q
 - L is the lower bound of $\log p(v; \theta)$
 - Chose family such that $\mathbb{E}_{\mathbf{h} \sim q}[\log p(\mathbf{h}, \mathbf{v})]$ is easy to compute.
 - Typically: impose that q is a factorial distribution

The Mean field approach

- q is a factorial distribution $q(\mathbf{h} \mid \mathbf{v}) = \prod_{i} q(h_i \mid \mathbf{v})$
 - where h_i are independent (and thus q(h|v) cannot match the true distribution p(h|v))
- Advantage: no need to specify parametric form for q.
 - The optimization problem determines the optimal probability under the constraints

Discrete Latent Variable

- The goal is to maximize ELBO: $\mathcal{L}(\boldsymbol{v}, \boldsymbol{\theta}, q) = \mathbb{E}_{\mathbf{h} \sim q} \left[\log p(\boldsymbol{h}, \boldsymbol{v}) \right] + H(q)$
- In the mean field approach, we assume q is a factorial distribution $q(h \mid v) = \prod q(h_i \mid v)$
- We can parameterize q with a vector \hat{h} whose entries are probabilities; then $q(h_i = 1|v) = \hat{h_i}$
- Then, we simply optimize the parameters ĥ by any standard optimization technique (e.g., gradient descent)

Outline

- ☑ Inference as Optimization
- Expectation Maximization
- MAP Inference and Sparse Coding

Variational Inference and Learning

Discrete Latent Variables

Calculus of Variations

Continuous Latent Variables

- Inference is to compute $p(h|v) = \frac{p(v|h)p(h)}{p(v)}$
- However, exact inference requires an exponential amount of time in these models
 - Computing p(v) is intractable
- Approximate inference is needed

Recap

- We compute Evidence Lower Bound (ELBO) instead of p(v).
- **ELBO:** $\mathcal{L}(\boldsymbol{v}, \boldsymbol{\theta}, q) = \log p(\boldsymbol{v}; \boldsymbol{\theta}) D_{\mathrm{KL}} \left(q(\boldsymbol{h} \mid \boldsymbol{v}) \| p(\boldsymbol{h} \mid \boldsymbol{v}; \boldsymbol{\theta}) \right)$
 - □ After rearranging the equation,

$$\mathcal{L}(\boldsymbol{v}, \boldsymbol{\theta}, q) = \mathbb{E}_{\mathbf{h} \sim q} \left[\log p(\boldsymbol{h}, \boldsymbol{v}) \right] + H(q)$$

- For any choice of q, L provides a lower bound.
- □ If we take q equals to p, we can get p(v) exactly.

- In machine learning, minimizing a function $J(\theta)$ by finding the input vector $\theta \in \mathbb{R}^n$ is the purpose.
- This can be accomplished by solving for the critical points where $\nabla_{\theta} J(\theta) = 0$.

- But in some cases, we actually want to solve for a function f(x).
- Calculus of variations is a method of finding the critical points w.r.t f(x).
- A function of a function f is **functional** J[f].
- We can take functional derivatives (a.k.a. variational derivatives), of J[f] with respect to individual values of the function f(x) at any specific value of x.
- Functional derivatives is denoted $\frac{\delta}{\delta f(x)}J$.

- Euler-Lagrange equation (simplified form)
 - Consider a functional $J(f) = \int g(f(x), x) dx$. Extreme point of J is given by the condition $\frac{\partial}{\partial f(x)} g(f(x), x) = 0$
 - (Proof) Assume we change f by the amount of $\epsilon \cdot \eta(x)$ by an arbitrary function $\eta(x)$. Then, $J(f(x) + \epsilon \eta(x)) = \int g(f(x) + \epsilon \eta(x), x) dx = \int [g(f(x), x) + \frac{\partial g}{\partial f} \epsilon \eta(x)] dx = J + \epsilon \int \frac{\partial g}{\partial f} \eta(x) dx$

• =: Use $y(x_1 + \epsilon_1, \dots, x_D + \epsilon_D) = y(x_1, \dots, x_D) + \sum_{i=1}^{D} \frac{\partial y}{\partial x_i} \epsilon_i + O(\epsilon^2)$

• Note that at the extreme point, $J(f + \epsilon \eta(x)) = J$, which implies $\int \frac{\partial g}{\partial f} \eta(x) = 0$. Since this is true for any $\eta(x)$, $\frac{\partial g}{\partial f} = 0$.

- $\blacksquare \mathcal{L}(\boldsymbol{v}, \boldsymbol{\theta}, q) = \mathbb{E}_{\mathbf{h} \sim q} \left[\log p(\boldsymbol{h}, \boldsymbol{v}) \right] + H(q)$
 - $\square H(q) = -\int q(x)\log q(x) \, dx$
- We want to maximize L.
- So we have to find the q which becomes a critical point of L

• Find
$$\frac{\delta}{\delta q(x)} L=0$$

Example

- Consider the problem of finding the probability distribution function over $x \in R$ that has the maximal differential entropy H(p) = $-\int p(x) \log p(x) dx$ among the distribution with $E(x) = \mu$ and $Var(x) = \sigma^2$
 - I.e., the problem is to find p(x) to maximize H(p) =
 - $-\int p(x)\log p(x) dx$, such that
 - p(x) integrates to 1

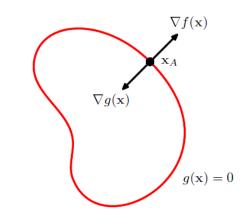
•
$$E(x) = \mu$$

• $Var(x) = \sigma^2$

Lagrange Multipliers

- How to maximize (or minimize) a function with equality constraint?
- Lagrange multipliers
 - Problem: maximize f(x) when g(x)=0
 - Solution
 - Maximize $L(x, \lambda) = f(x) + \lambda \cdot g(x)$
 - λ is called Lagrange multiplier
 - We find x and λ s.t. $\nabla_{x}L = 0$ and $\frac{\partial L}{\partial \lambda} = 0$
 - $\nabla_x f(x)$ and $\nabla_x g(x)$ are orthogonal to the surface g(x)=0; thus $\nabla_x f(x) = -\lambda \nabla_x g(x)$ for some λ

$$\Box \ \frac{\partial L}{\partial \lambda} = 0 \text{ leads to g(x)=0}$$



- Goal: find p(x) which maximizes $H(p) = -\int p(x) \log p(x) dx$, s.t. $\int p(x) dx = 1$, $E(x) = \mu$, and $Var(x) = \sigma^2$
- Using Lagrange multiplier, we maximize $\mathcal{L}[p] = \lambda_1 \left(\int p(x) dx - 1 \right) + \lambda_2 \left(\mathbb{E}[x] - \mu \right) + \lambda_3 \left(\mathbb{E}[(x - \mu)^2] - \sigma^2 \right) + H[p]$ $= \int \left(\lambda_1 p(x) + \lambda_2 p(x) x + \lambda_3 p(x) (x - \mu)^2 - p(x) \log p(x) \right) dx - \lambda_1 - \mu \lambda_2 - \sigma^2 \lambda_3.$

We set the functional derivatives equal to 0:

$$\forall x, \frac{\delta}{\delta p(x)} \mathcal{L} = \lambda_1 + \lambda_2 x + \lambda_3 (x - \mu)^2 - 1 - \log p(x) = 0.$$

- We obtain $p(x) = \exp(\lambda_1 + \lambda_2 x + \lambda_3 (x \mu)^2 1)$.
- We are free to choose Lagrange multipliers as long as $\int p(x) dx = 1$, $E(x) = \mu$, and $Var(x) = \sigma^2$
- We may set the followings.
 - $\lambda_1 = 1 \log \sigma \sqrt{2\pi}$ $\lambda_2 = 0$ $\lambda_3 = -\frac{1}{2\sigma^2}$
- Then, we obtain $p(x) = \mathcal{N}(x; \mu, \sigma^2)$.
- This is one reason for using the normal distribution when we do not know the true distribution.

Outline

- ☑ Inference as Optimization
- Expectation Maximization
- MAP Inference and Sparse Coding

Variational Inference and Learning

Discrete Latent Variables

Calculus of Variations

Continuous Latent Variables

Continuous Latent Variables

- When our model contains continuous latent variables, we can perform variational inference by maximizing L using calculus of variations.
- If we make the mean field approximation, $q(h|v) = \prod_i q(h_i|v)$, and fix $q(h_i|v)$ for all $i \neq j$, then the optimal $q(h_j|v)$ can be obtained by normalizing the unnormalized distribution

$$\tilde{q}(h_j|v) = \exp(E_{h_{-j}\sim q}(h_{-j}|v)\log p(h,v))$$

 Thus, we apply the above equation iteratively for each value of j until convergence

Proof of Mean Field Approximation

- (claim) Assuming $q(h|v) = \prod_i q(h_i|v)$, the optimal $q(h_j|v)$ is given by normalizing the unnormalized distribution $\tilde{q}(h_j|v) = \exp(E_{h_{-j} \sim q}(h_{-j}|v) \log p(h,v))$
- (proof) Note that ELBO = $E_{h\sim q}[\log p(h, v)] + H(q)$, and $q(h|v) = \prod_i q_i(h_i|v)$.
 - Thus, ELBO = $\int \prod_i q_i (\log p(h, v)) dh \int (\prod_i q_i) (\log \prod_i q_i) dh = \int q_j \{ \int \log p(h, v) (\prod_{i \neq j} q_i dh_i) \} dh_j \int (\prod_i q_i) (\sum_i \log q_i) dh \}$
 - If we take out terms related to q_j , then ELBO becomes

$$\int q_j E_{h_j}(\log p(h, v)) dh_j - \int q_j \log q_j dh_j + const$$

$$= \int q_j \, \log p^*(h_j, v) \, dh_j - \int q_j \log q_j \, dh_j + const \qquad (1)$$

- where $p^*(h_j, v)$ is a prob. distribution and $\log p^*(h_j, v) = E_{h_j}(\log p(h, v)) + const$
- Note that (1) is negative KL divergence $-D_{KL}(q_j||p^*(h_j, v))$; thus, the best q_j maximizing ELBO is given by $q_j = p^*(h_j, v)$.
- In that case, $\log q_j = \log p^*(h_j, v) = E_{h_{-j}}(\log p(h, v)) + const$. Thus, $q_j \propto \exp\left(E_{h_{-j}}(\log p(h, v))\right) = \exp(E_{h_{-j}\sim q}(h_{-j}|v)\log p(h, v))$

What you need to know

- Inference as Optimization
- Expectation Maximization
- MAP Inference and Sparse Coding
- Variational Inference and Learning

Questions?