Bioreactor analysis & design II

- Study on additional variables and analyses
 - Soluble microbial products
 - Nutrient & e⁻ acceptor consumption
 - Hydrolysis

Soluble microbial products (SMP)

- Cell components that released during cell lysis, diffuse through the cell membrane, are lost during synthesis, or are excreted for some purpose
- Does not include intermediates of degradation pathway
- MW = 100s 1000s
- Biodegradable

Significance of SMP

- Appear in all cases
- Constitute the majority of the effluent COD & BOD in many cases
- Can complex metals, foul membranes, & cause color or foaming

Two types of SMP

 UAP (substrate-Utilization-Associated Products): produced directly during substrate metabolism

 $r_{UAP} = -k_1 r_{ut}$ $r_{UAP} = rate of UAP formation [M_pL^{-3}T^{-1}]$ $k_1 = UAP - formation coefficient [M_pM_s^{-1}]$

 BAP (Biomass-Associated Products): formed directly from biomass as part of maintenance and decay

$$r_{BAP} = k_2 X_a$$

$$r_{BAP} = rate of BAP formation [M_p L^{-3} T^{-1}]$$

$$k_2 = BAP - formation coefficient [M_p M_x^{-1} T^{-1}]$$

SMP biodegradation

 Assume degradation of both UAP and BAP follow Monod kinetics (with own parameter values for each):

$$r_{deg-UAP} = -\frac{\hat{q}_{UAP}UAP}{K_{UAP} + UAP}X_a$$
$$r_{deg-BAP} = -\frac{\hat{q}_{BAP}BAP}{K_{BAP} + BAP}X_a$$

 $UAP = concentration of UAP [M_pL^{-3}]$ BAP = concentration of BAP [M_pL^{-3}]

SMP in a CSTR: mass balance

• Steady-state mass balance for UAP & BAP:

$$0 = 0 - Q \cdot UAP - k_1 r_{ut} V - \frac{\hat{q}_{UAP} UAP}{K_{UAP} + UAP} X_a V$$
$$0 = 0 - Q \cdot BAP + k_2 X_a V - \frac{\hat{q}_{BAP} BAP}{K_{BAP} + BAP} X_a V$$

SMP in a CSTR: solutions

$$UAP = -\frac{\hat{q}_{UAP}X_a\theta + K_{UAP} + k_1r_{ut}\theta}{2}$$
$$+\frac{\sqrt{(\hat{q}_{UAP}X_a\theta + K_{UAP} + k_1r_{ut}\theta)^2 - 4K_{UAP}k_1r_{ut}\theta}}{2}$$
$$BAP = -\frac{K_{BAP} + (\hat{q}_{BAP} - k_2)X_a\theta}{2}$$
$$+\frac{\sqrt{(K_{BAP} + (\hat{q}_{BAP} - k_2)X_a\theta)^2 + 4K_{BAP}k_2X_a\theta}}{2}$$

Here, the substrate utilization rate,
$$r_{ut}$$
, can be computed by

$$r_{ut} = -\frac{S^0 - S}{\theta} = -\frac{\hat{q}S}{K + S}X_a$$

Observed yield

The VSS in a CSTR is calculated as:

The net yield in the CSTR is: $Y \frac{1 + (1 - f_d)b\theta}{1 + b\theta}$

This value is more often called as Observed Yield (Yobs)

Nutrient consumption

• For the consumption of nutrients for biomass production:

$$r_n = \gamma_n \cdot Y_{obs} \cdot r_{ut} = \gamma_n \cdot Y \cdot r_{ut} \frac{1 + (1 - f_d)b\theta}{1 + b\theta}$$

 r_n = rate of nutrient consumption $[M_n L^{-3} T^{-1}]$ γ_n = the stoichiometric ratio of nutrient mass to VSS for biomass $[M_n M_x^{-1}]$

Using $C_5H_7O_2N$ as cell formula: $\gamma_N = 14 \ g \ N/113 \ g \ VSS = 0.124 \ g \ N/g \ VSS$ $\gamma_P = 0.2 \ x \ 0.124 = 0.025 \ g \ P/g \ VSS$ (assume $\ g \ P = 0.2 \ x \ g \ N$)

Nutrient consumption in a CSTR

• Steady-state mass balance:

$$0 = QC_n^0 - QC_n + r_n V$$

 C_n^{0} = nutrient conc. in the influent [$M_a L^{-3}$] C_n = nutrient conc. in the reactor [$M_a L^{-3}$]

$$C_n = C_n^0 + r_n \theta$$

if $C_n < 0$, nutrient-limiting

e⁻ acceptor consumption

(e⁻ acceptor used in a reactor)

= [(total O.D. in the influent) - (total O.D. in the effluent)]x (conversion factor)

In terms of the use rate for a reactor $(\Delta S_{\alpha}/\Delta t)$:

$$\frac{\Delta S_a}{\Delta t} = \gamma_a \left[Q \left(S^0 + 1.42 X_v^0 \right) - Q \left(S + SMP + 1.42 X_v \right) \right]$$
$$= \gamma_a Q \left[S^0 - S - SMP + 1.42 \left(X_v^0 - X_v \right) \right]$$

 γ_a = the stoichiometric ratio of acceptor mass to oxygen demand for oxygen: 1 g O₂/g COD for nitrate: 0.35 g NO₃⁻N/g COD

e⁻ acceptor consumption (cont'd)

To estimate the required mass rate of acceptor supply (ex: aeration $[O_2]$ requirement), the calculated e⁻ acceptor use rate, $\Delta S_a/\Delta t$ can be written as:

$$\frac{\Delta S_a}{\Delta t} = \gamma_a \left[Q \left(S^0 + 1.42 X_v^0 \right) - Q \left(S + SMP + 1.42 X_v \right) \right]$$

$$= Q \left(S_a^0 - S_a \right) + R_a$$
(mass flow rate in) -
(mass flow rate out)
(M_T^1)
(M_T^1)
(M_T^1)

Hydrolysis of particulates & polymers

- Particulates and polymeric substances account for a significant portion of BOD in wastewater
- >50% of BOD in typical sewage is particulates (SS)
- Particulates and large-MW compounds cannot penetrate the cell membrane

 \rightarrow needs to be hydrolyzed to smaller molecules

- Catalyzed by extracellular enzymes
- The mechanism and kinetics of hydrolysis it not fully understood

Hydrolysis of particulates & polymers

One simple way of describing hydrolysis is to assume first-order kinetics for particulates (or polymers):

 $r_{hyd} = -k_{hyd}S_p$

 r_{hyd} = rate of accumulation of particulates (=dS_p/dt) [M_sL⁻³T⁻¹] k_{hyd} = first-order hydrolysis rate coefficient [T⁻¹] S_p = concentration of particulates in the reactor [M_sL⁻³]

In a steady-state CSTR,

$$0 = Q\left(S_p^{\ 0} - S_p\right) - k_{hyd}S_pV$$

 S_p^{0} = concentration of particulates in the influent[M_sL^{-3}] $S_p = \frac{S_p^0}{1 + k_{hyd}\theta}$

Hydrolysis of particulates & polymers

• Effect of hydrolysis on dissolved substrates mass balance in a steady-state CSTR

$$0 = Q(S^0 - S) - \frac{\hat{q}S}{K + S} X_a V + k_{hyd} S_p V$$
$$0 = \{ \left(S^0 + k_{hyd} S_p \theta \right) - S \} - \frac{\hat{q}S}{K + S} X_a \theta$$

 \rightarrow Increase in S^0 by $k_{hyd}S_p\theta$

→ Increased biomass, but no change in dissolved substrates in the reactor

So: to include the effect of hydrolysis of particulates,

substitute S^0 with $(S^0 + k_{hyd}S_p\theta)$