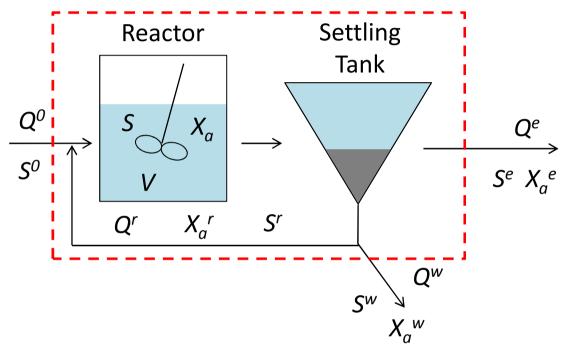
Bioreactor analysis & design III

- CSTR with settling and cell recycling
 - Deriving solutions for S and X_a
 - Updating other solutions
- Key operational variable -- SRT
- Alternate rate expressions

CSTR with settling and cell recycling



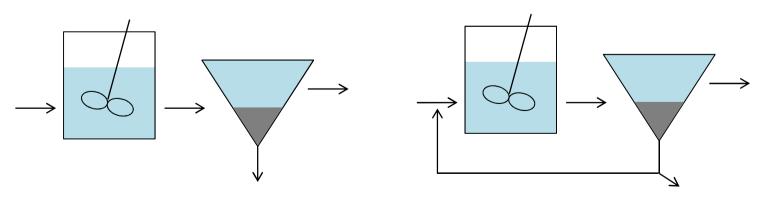
From flow mass balance: $Q^0 = Q^e + Q^w$

Assumptions

- Biodegradation of soluble substrates in the reactor only, no biodegradation in the settling tank ($S = S^e = S^w = S^r$)
- No active biomass in influent
- Steady state

HRT vs. SRT

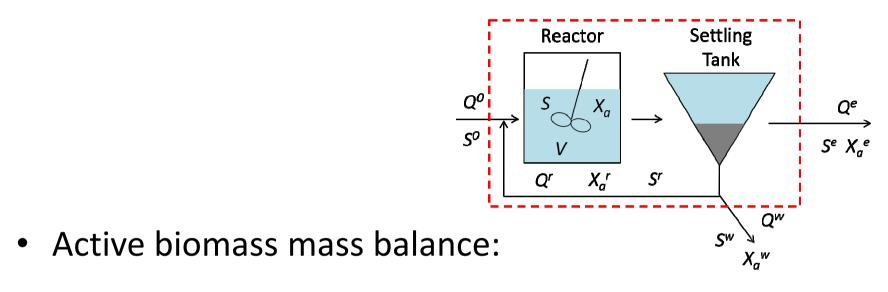
- HRT (θ): Hydraulic Retention Time; the average time the water stays in the system
- SRT (θ_x): Solids Retention Time (or mean cell residence time, MCRT); the average time the biomass stays in the system



CSTR (chemostat) + clarifier without sludge return: HRT = SRT

CSTR with sludge return: HRT < SRT

CSTR, cell recycle: Mass balances



$$0 = 0 - (Q^{e}X_{a}^{e} + Q^{w}X_{a}^{w}) + r_{net}V$$

 r_{net} = net rate of active biomass growth ($M_x L^{-3} T^{-1}$)

• Substrate mass balance:

$$0 = Q^0 S^0 - (Q^e S + Q^w S) + r_{ut} V$$

 r_{ut} = substrate utilization rate (M_sL⁻³T⁻¹)

• To solve the mass balance equations, use the following relationships:

$$\theta_{x} = \frac{active \ biomass \ in \ the \ system}{production \ rate \ of \ active \ biomass}} = \frac{X_{a}V}{Q^{e}X_{a}{}^{e} + Q^{w}X_{a}{}^{w}}$$
$$r_{ut} = -\frac{rate \ of \ mass \ substrate \ utilized}{volume \ of \ reactor}} = -\frac{Q^{0}S^{0} - Q^{e}S - Q^{w}S}{V}$$
$$= -\frac{Q^{0}(S^{0} - S)}{V} = -\frac{S^{0} - S}{\theta}$$

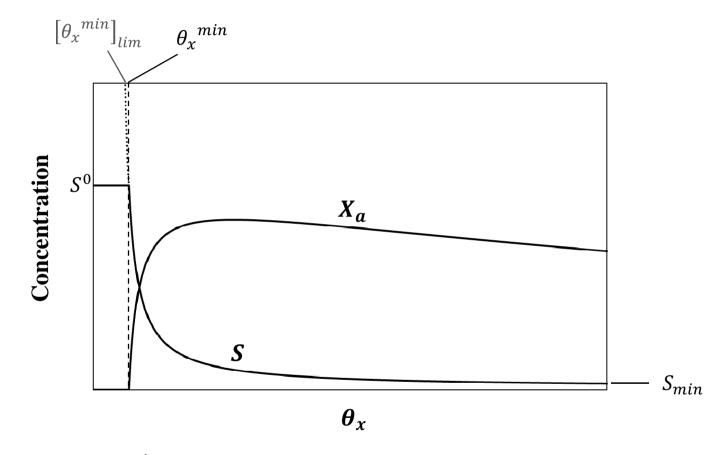
CSTR, cell recycle: Solutions for $S \& X_a$

$$S = K \frac{1 + b\theta_x}{\theta_x (Y\hat{q} - b) - 1}$$

$$X_a = \frac{\theta_x}{\theta} \frac{Y(S^0 - S)}{1 + b\theta_x}$$

- Compare with our solutions for CSTR without cell recycling
- These are <u>generic solutions</u> applicable for both with & without cell recycling as long as the bioreactor is a steady state CSTR

S & X_a vs. θ_x : key trends



- $\theta_x \leq \theta_x^{min}$: washout $(S^0 \to \infty: \theta_x^{min} \to [\theta_x^{min}]_{lim})$
- $\theta_x \to \infty$: $S = S_{min}$

• For $\theta_x^{min} < \theta_x$, S decreases with increase in θ_x , but X_a peaks at some point

$$S_{min}, \theta_x^{min}, \& \left[\theta_x^{min}\right]_{lim}$$

(use
$$S = K \frac{1 + b\theta_x}{Y\hat{q}\theta_x - (1 + b\theta_x)}$$
)

$$S_{min} = \lim_{\theta_x \to \infty} \left\{ K \frac{1 + b\theta_x}{Y \hat{q} \theta_x - (1 + b\theta_x)} \right\} = K \frac{b}{Y \hat{q} - b}$$

$$S^{0} = K \frac{1 + b\theta_{x}^{min}}{Y\hat{q}\theta_{x}^{min} - (1 + b\theta_{x}^{min})} \quad \Box \qquad \theta_{x}^{min} = \frac{K + S^{0}}{S^{0}(Y\hat{q} - b) - bK}$$

$$\left[\boldsymbol{\theta}_{\boldsymbol{\chi}}^{min}\right]_{lim} = \lim_{S^0 \to \infty} \left\{ \frac{K + S^0}{S^0(Y\hat{q} - b) - bK} \right\} = \frac{1}{Y\hat{q} - b}$$

Updated solutions for VSS

Reactor nbVSS concentration

$$X_i = \frac{\theta_x}{\theta} \left[X_i^0 + X_a (1 - f_d) b\theta \right]$$

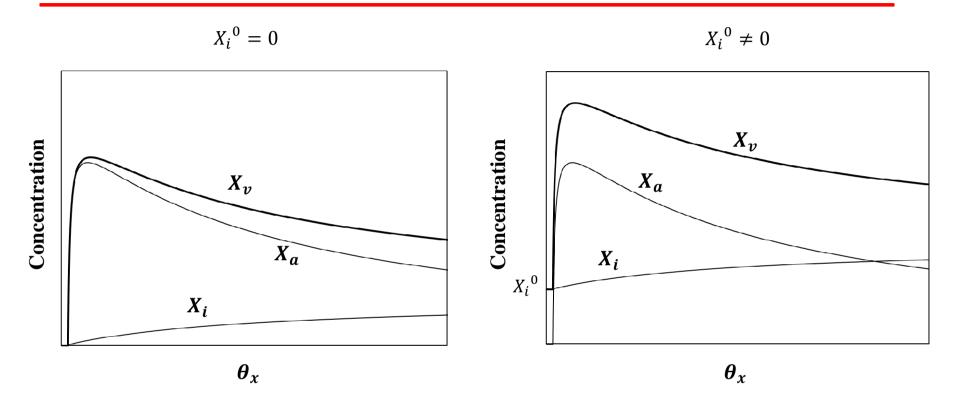
• Reactor total VSS concentration (when $S_p^0 = 0$)*

$$X_{v} = X_{a} + X_{i} = \frac{\theta_{x}}{\theta} \left[X_{i}^{0} + \frac{Y(S^{0} - S)\{1 + (1 - f_{d})b\theta_{x}\}}{1 + b\theta_{x}} \right]$$

$$\begin{cases} * \text{Note that in this solution } X_{v} \text{ does not} \\ account \text{ for } S_{p} \text{ (biodegradable organic} \\ particulates/polymers)} \end{cases}$$

Т

X's vs.
$$\theta_x$$



- Decay becomes more dominant (as compared to cell synthesis) as θ_x increases
 - → For $X_i^{\ 0} = 0$ case, X_a/X_v increases as θ_x increases

Solids production rate $[M_x/T]$

• Active biomass production rate (r_{abp})

$$r_{abp} = \frac{X_a V}{\theta_x}$$

• Total VSS production rate (r_{VSS})

$$r_{VSS} = \frac{X_v V}{\theta_x}$$

Again, note that defining

$$X_v = X_a + X_i$$
 and
 $X_v V/\theta_x$ = total VSS production rate
implies that we assume $S_p = 0$

Updated solution for observed yield

$$Y_{obs} = Y \frac{1 + (1 - f_d)b\theta_x}{1 + b\theta_x}$$

because
$$r_{VSS} = \frac{X_v V}{\theta_x} = QX_i^0 + \frac{QY(S^0 - S)\{1 + (1 - f_d)b\theta_x\}}{1 + b\theta_x}$$

CSTR, cell recycle: Linking with stoichiometry

$$f_{s}^{0} = Y \frac{(n_{e} \ e^{-} \ eq \ cells/mole \ cells)(8 \ g \ COD/e^{-} \ eq \ donor)}{(M_{c} \ g \ cells/mole \ cells)}$$

$$recall \qquad Y = f_{s}^{0} \frac{(M_{c} \ g \ cells/mole \ cells)}{(n_{e} \ e^{-} \ eq \ cells/mole \ cells)(8 \ g \ COD/e^{-} \ eq \ donor)}$$

$$f_{s} = f_{s}^{0} \left[\frac{1 + (1 - f_{d})b\theta_{x}}{1 + b\theta_{x}} \right]$$
because $f_{s}/f_{s}^{0} = Y_{n}/Y$

Alternate rate expressions

Contois equation

$$r_{ut} = -\frac{\hat{q}S}{BX_a + S}X_a$$

 $B = \text{constant} [M_s/M_x]$

When
$$X_a \to \infty$$
, $r_{ut} = -\frac{\hat{q}}{B}S$

(at high biomass concentrations substrate utilization depends on *S*, not X_a)

Alternate rate expressions

Moser equation

$$r_{ut} = -\frac{\hat{q}S}{K+S^{-\gamma}}X_a$$

γ = constant [unitless]

• Tessier equation

$$r_{ut} = -\hat{q} \left(1 - e^{S/K} \right) X_a$$

Just **REMEMBER** that Monod Eq. is **NOT** the only option!!!

Monod equation: extension

$$r_{ut} = -\hat{q} \frac{S}{K+S} \frac{A}{K_A + A} X_a$$

 $A = e^{-} \operatorname{acceptor} \operatorname{concentration} [M_{A}/L^{3}]$ $K_{A} = \operatorname{half-saturation} \operatorname{coefficient} \operatorname{for} e^{-} \operatorname{acceptor} [M_{A}/L^{3}]$

- e⁻ acceptor can also be limiting!
- Can be reduced to single Monod eq. if $A >> K_A$
- Terms for other limiting substances can be added as well (e.g., N, P)