Physical unit processes III

Today's class

Physical processes utilizing interphase mass transfer

- Gas-liquid mass transfer
- Adsorption
- Ion exchange

Mass transfer processes

- Phase partitioning: in multi-phase systems, materials are distributed with some ratio between the phases <u>at</u> <u>equilibrium</u>
 - Recall Henry's law (gas-liquid partitioning): $C_g/C_s = H_u$

ex) At 1 atm, 20°C, the saturation concentration of dissolved oxygen in pure water is 9.08 mg/L (0.208 atm partial pressure of O_2 in gas phase \leftrightarrow 9.08 mg/L O_2 in aqueous solution)

Mass transfer processes

- Transfer of material from one homogeneous phase to another
- Interphase mass transfer occurs towards equilibrium
- **Time as a factor**: it takes some time for the mass transfer processes to occur such that equilibrium is established

ex) Drying clothes

phase partitioning: moisture wetting the clothes vs. moisture in the ambient air

equilibrium: almost no moisture in the clothes because the amount of ambient air is almost infinite

time as a factor: it takes some time (~1 day) for the clothes to dry

Application of mass transfer in WW treatment

Type of reactor	Phase equilibria	Application
Absorption	Gas ightarrow Iiquid	Addition of gases to water (e.g., O ₂), NH ₃ scrubbing in acid
Adsorption	Gas → solid Liquid → solid	Removal of organics with activated carbon Removal or organics with activated carbon, dechlorination
Desorption	Solid → liquid Solid → gas	Sediment scrubbing Reactivation of spent activated carbon
Drying (evaporation)	Liquid $ ightarrow$ gas	Drying of sludge
Gas stripping	Liquid \rightarrow gas	Removal of gases (e.g., CO ₂ , H ₂ S, NH ₃ , VOCs)
Ion exchange	Liquid \rightarrow solid	Selective removal of chemical constituents, demineralization

- Modeling concentration change by mass transfer
 - Mass transfer occurs at the interface (surface) -- A
 - Should depend on compound (rate of diffusion) & surface characteristics (calm or turbulent?) -- K_L
 - Should also depend on how far the current state is from equilibrium
 -- (C_s-C)
 - Flux = (mass transferred) / (area) / (time)

$$F = K_L(C_s - C)$$

F = flux of mass transfer [ML⁻²T⁻¹]

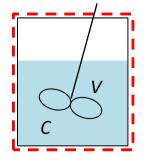
 K_L = mass transfer coefficient with liquid as a reference phase [LT⁻¹]

A= area through which mass is transferred [L²]

 C_s = liquid concentration in equilibrium with bulk gas concentration [ML⁻³]

C = *current liquid concentration*

- Modeling concentration change by mass transfer
 - When gas concentration is constant, change in liquid concentration is represented as:


$$r_{v} = \frac{dC}{dt}\Big|_{mass\ transfer} = K_{L}\frac{A}{V}(C_{s} - C) = K_{L}a(C_{s} - C)$$

 $r_v = rate of mass transfer [ML^{-3}T^{-1}]$ $V = bulk liquid volume [L^3]$ $K_L a = volumetric mass transfer coefficient [T^{-1}] - 1^{st} order rate constant$

- Absorption of gas in a batch reactor
 - (rate of accumulation)

= (rate of inflow) – (rate of outflow) + (rate of generation)

$$\frac{dC}{dt} = K_L a(C_s - C_t) \quad \Longrightarrow \quad \frac{C_s - C_t}{C_s - C_o} = e^{-(K_L a)t}$$

• Desorption of gas in a batch reactor

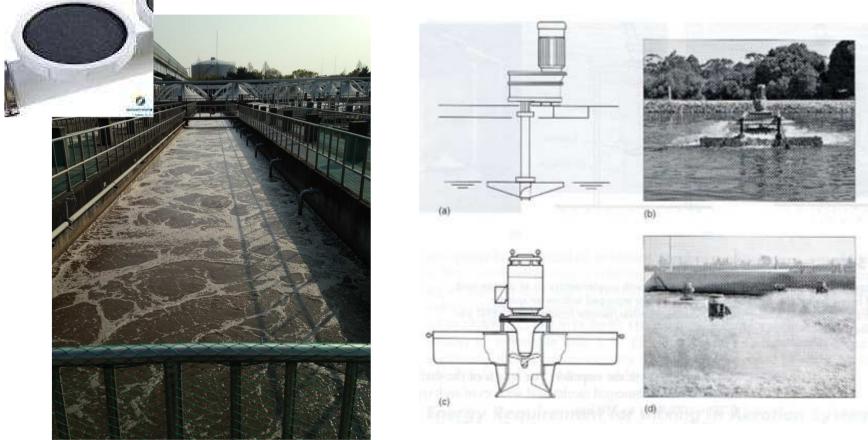
$$\frac{dC}{dt} = -K_L a(C_s - C) \quad \Longrightarrow \quad \frac{C_t - C_s}{C_0 - C_s} = e^{-(K_L a)t}$$

Q: Secondary effluent is placed in a storage basin for reuse. If the initial DO concentration is 1.5 mg/L, estimate the time required for the DO concentration to increase to 8.5 mg/L due to surface reaeration. The surface area of the storage basin is 400 m² and the depth is 3 m. Assume the K_L value for oxygen is 0.03 m/hr. Use the saturation DO concentration of 9.09 mg/L at 20°C.

This is the case of absorption of gas in a batch reactor, so use:

$$\frac{C_s - C_t}{C_s - C_o} = e^{-(K_L a)t}$$

$$t = -\frac{1}{K_L a} \cdot \ln \frac{C_s - C_t}{C_s - C_o}$$


$$a = \frac{A}{V} = \frac{1}{H} = 0.33 \ m^{-1}$$

$$t = -\frac{1}{(0.03 \ mhr) \cdot (0.33 \ m^{-1})} \cdot \ln \frac{9.09 - 8.5}{9.09 - 1.5} = 258 \ hr = 10.8 \ d$$

You see it takes a long time for surface reaeration from the atmosphere in the absence of mechanical agitation!

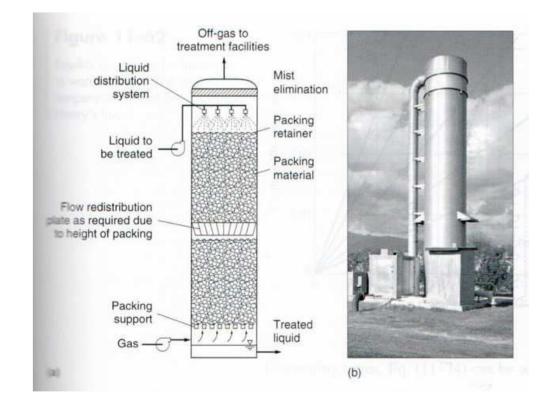
G-L mass transfer ex 1: Aeration

• Diffused air aeration vs Mechanical aeration

G-L mass transfer ex 2: Gas stripping

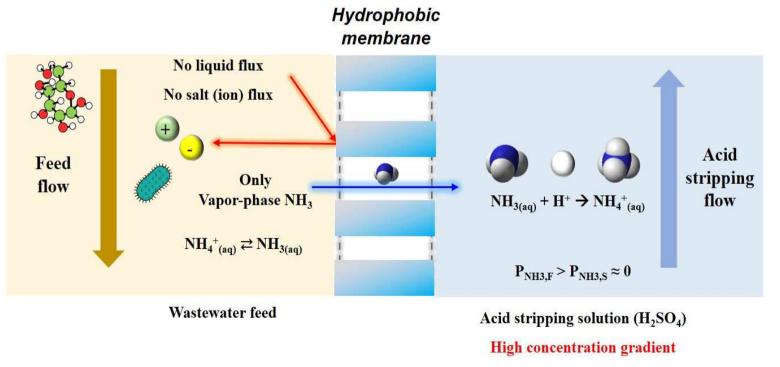
• Mass transfer of a gas from the liquid phase to the gas phase

Recall:
$$\frac{dC}{dt} = K_L \frac{A}{V}(C - C_s) = K_L a(C - C_s)$$


(for desorption of gas)

- Stripping (blowing) a contaminant-free gas into the water
 - Creates large gas-liquid interfacial area for mass transfer
 - Most significant concern in the process design
 - Concentration gradient generated: $C_s \rightarrow 0$
- Removal of NH₃, odorous gases and VOCs
 - For ammonia stripping, pH should be raised by addition of lime (why?)

Gas stripping - methods


• Methods to contact phases

- Cocurrent, countercurrent, cross-flow
- Countercurrent most common

G-L mass transfer ex 3: Gas-permeable membrane

- An emerging technology
 - Gas-permeable membranes have been used for water production from water with high impurities (e.g., RO retentate from seawater desalination)
 - Opportunities to be used for recovery NH_3/NH_4^+ and CH_4 from wastewater

Adsorption

- Removal of substances in solution by accumulation of those substances on a solid phase
 - Adsorbate: the substance that is being removed from the solution
 - Adsorbent: the material onto which the adsorbate accumulates

• Applications

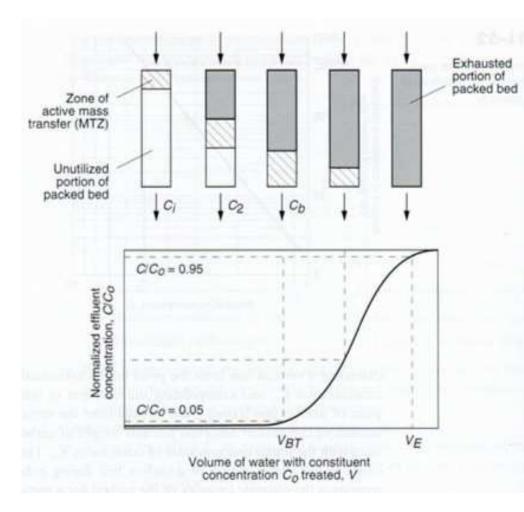
Removal of:

- refractory organics
- residual inorganic constituents (nitrogen, sulfides, heavy metals, etc.)
- odor compounds

Types of adsorbents

Activated carbon

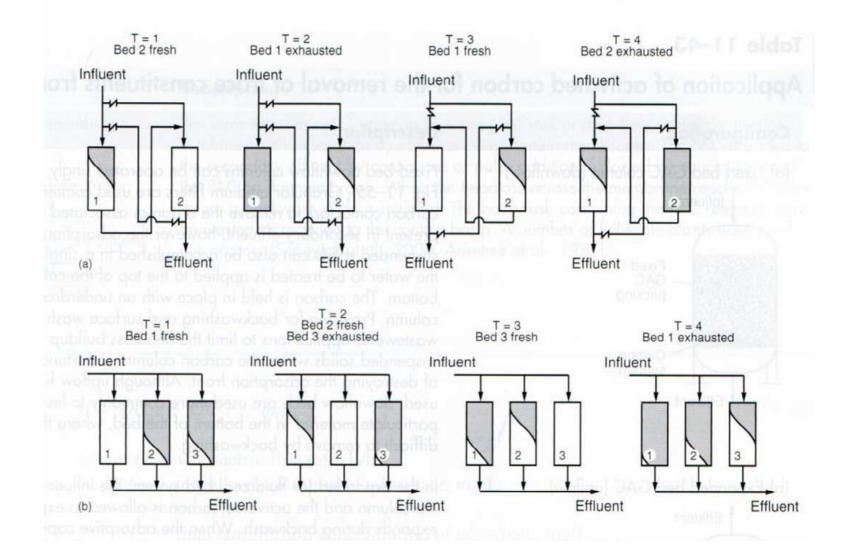
- Most common removal of refractory organics & residual COD
- Derived by i) pyrolysis of organic materials (wood, coal, coconut, etc.) and
 ii) activation by steam or CO₂ at high temperatures
- Two types based on particle size
 - GAC (granular activated carbon): > 0.1 mm, apply in columns
 - PAC (powdered activated carbon): < 0.074 mm, apply in well-mixed contact tanks


• Granular ferric hydroxide

- Ferric hydroxides/oxides have high affinity to many metals and metalloids
- Applicable for removal of arsenic, chromium, selenium, copper, etc.

Activated alumina

- May be considered in case of water reuse
- Removal of arsenic and fluoride


GAC columns: breakthrough curve

- Mass transfer zone

 (MTZ; dashed zone):
 adsorption is occurring,
 some adsorbate conc. in
 pore-water
- Grey zone: GAC exhausted (adsorption equilibrium with influent), no further adsorption
- Breakthrough occurs after adding V_{BT} of influent, but want full usage of the column!

GAC columns: configurations

Ion exchange

- A unit process in which ions of a given species are displaced from an insoluble exchange material by ions of a different species in solution
- So ions in the solution is exchanged by other ions originating from the insoluble exchange material
- Applications
 - Most common: water softening (Na⁺ from exchange material to solution; Ca²⁺ and Mg²⁺ from solution to exchange material)
 - Removal of nitrogen, heavy metals, and TDS
- Commonly used exchange materials
 - Natural mineral: zeolite
 - Synthetic material: ion exchange resin

Ion exchange – N & heavy metal removal

Nitrogen removal

- Remove NH_4^+ or NO_3^-
- NH₄⁺: zeolite or synthetic cation exchange resins
- NO_3^- : synthetic anion exchange resins

Heavy metal removal

- Zeolites, synthetic anion and cation resins, chelating resins
- Some chelating resins are made to have a high selectivity for specific metals (cations Cu, Ni, Cd, Zn, ...)

Key references

• Textbook sec 5-10, 5-11, 11-9~11-11

• Physical unit processes: recent development by WQ&EL, SNU