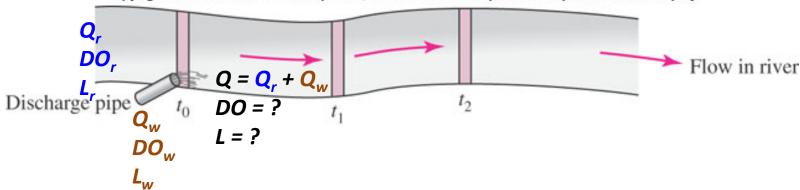

Water quality II

Water quality II

- DO dynamics in river
 - DO sag curve
 - Modeling DO in a river
 - Solution: Streeter-Phelps equation
- Groundwater quality
 - Contamination issues
 - Contaminant transport mechanisms

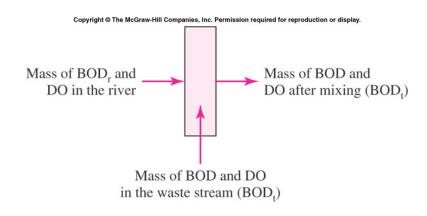
Water quality in rivers: DO sag curve


Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

- Factors causing DO depletion: BOD in water (upstream + waste)
- Factors causing DO increase: reaeration from the atmosphere (+ photosynthesis – neglected)

Modeling the DO along a river

Copyright @ The McGraw-Hill Companies, Inc. Permission required for reproduction or display.



We will model the DO of a river receiving waste at time t_0 . The river will be modeled as a PFR.

* The solution for this problem is known as "Streeter-Phelps equation", a well-known equation derived by Streeter and Phelps in 1925.

DO modeling: initial conditions

The DO and ultimate BOD at t_0 are calculated by a mass balance approach:

$$(Q_w + Q_r)DO_a = Q_wDO_w + Q_rDO_r$$
$$(Q_w + Q_r)L_a = Q_wL_w + Q_rL_r$$

 $DO_a = DO$ concentration right after mixing (mg/L) $L_a = ultimate BOD$ right after mixing (mg/L)

$$DO_a = \frac{Q_w DO_w + Q_r DO_r}{Q_w + Q_r} \qquad L_a = \frac{Q_w L_w + Q_r L_r}{Q_w + Q_r}$$

DO modeling: initial conditions (cont'd)

The temperature after mixing is calculated in the same way: 0.7 ± 0.7

 $T_a = \frac{Q_w T_w + Q_r T_r}{Q_w + Q_r}$

 T_a = temperature after mixing ($^{\circ}$ C or K)

 T_w = temperature of the waste stream ($^{\circ}$ C or K)

 T_r = temperature of the river before mixing($^{\circ}$ C or K)

Oxygen deficit

 Oxygen deficit (D): the difference between the saturation DO value and the actual DO concentration

$$D = DO_S - DO$$

Therefore, the oxygen deficit right after mixing is calculated as:

$$D_a = DO_s - \frac{Q_w DO_w + Q_r DO_r}{Q_w + Q_r}$$

 D_a = oxygen deficit right after mixing (mg/L)

Rate of reaeration, k_r

- Should depend on the stream velocity and depth
- The reaeration coefficient, k_r [day⁻¹]

$$k_r = \frac{3.9u^{1/2}}{h^{3/2}}$$
 $u = average stream velocity (m/s)$
 $h = average stream depth (m)$

Rate of reaeration should also depend on oxygen deficit

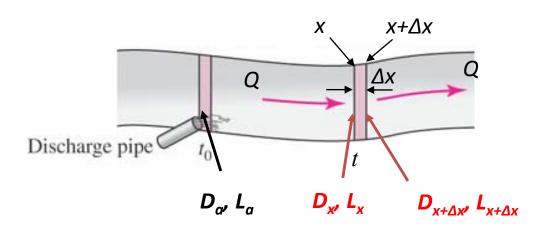
Rate of reaeration =
$$\frac{d(DO)}{dt}\Big|_{reaeration} = -\frac{dD}{dt}\Big|_{reaeration} = k_r D$$

• Effect of temperature on k_r : faster mass transfer at higher temp.

$$k_{r,T}=k_{r,20}\theta^{T-20}$$
 $k_{r,T}=$ reaeration coefficient at temperature T (day-1) $k_{r,20}=$ reaeration coefficient at 20 °C, obtained from $k_{r,20}=3.9u^{1/2}/h^{3/2}$ (day-1) $\theta=$ temperature coefficient (use 1.024)

Rate of deoxygenation, k_d

- Rate of oxygen consumption by microorganisms
- Assume that the first-order deoxygenation rate constant is equal to the BOD rate constant, k
- The assumption is valid for deep, slow-moving streams
- The rate of deoxygenation


Rate of deoxygenation =
$$-\frac{d(DO)}{dt}\Big|_{deoxygenation} = \frac{dD}{dt}\Big|_{deoxygenation}$$

= k_dL

 k_d = first-order deoxygenation rate constant [T⁻¹]

• Effect of temperature on k_d : use the equation for k!

$$k_T = k_{20} \theta^{T-20}$$

 $\theta = 1.135 \text{ for } 4\text{-}20 \% \& 1.056 \text{ for } 20\text{-}30 \%$

DO modeling: applying mass balance approach

Steady-state D (= DO_s -DO) balance for a thin plate at time t:

$$0 = QD_x - QD_{x+\Delta x} + k_d L_x \cdot \Delta V - k_r D_x \cdot \Delta V$$

$$\Delta V = \text{volume of the CV} = A \cdot \Delta X$$
(A = cross-sectional area)

With rearrangements and $\Delta x \rightarrow 0$, we obtain:

$$\frac{dD}{dt} = k_d L - k_r D$$

DO modeling: governing eq. & solution

Governing equation:
$$\frac{dD}{dt} = k_d L - k_r D$$

+ Initial conditions:

at t=0,
$$D=D_a$$
 and $L=L_a$

Solution:

$$D_{t} = \frac{k_{d}L_{a}}{k_{r} - k_{d}} \left(e^{-k_{d}t} - e^{-k_{r}t} \right) + D_{a} \left(e^{-k_{r}t} \right)$$

 D_t = oxygen deficit in a river after flowing downstream from the mixing point for time t

(Note
$$DO_t = DO_s - D_t$$
)

Critical point

 Critical point: the point where the DO is the lowest on the DO sag curve

$$t_c = \frac{1}{k_r - k_d} ln \left[\frac{k_r}{k_d} \left(1 - D_a \frac{k_r - k_d}{k_d L_a} \right) \right]$$

 t_c = the time to the critical point [T]

• The critical deficit, D_c

$$D_{c} = \frac{k_{d}L_{a}}{k_{r} - k_{d}} \left(e^{-k_{d}t_{c}} - e^{-k_{r}t_{c}} \right) + D_{a} \left(e^{-k_{r}t_{c}} \right)$$

Modeling DO along a river

Q: A city disposes of 1.05 m³/s of treated sewage having ultimate BOD of 28.0 mg/L and DO of 1.8 mg/L into a river. At the upstream from the outfall, the river flowrate is 7.08 m³/s, and the ultimate BOD and DO of the river are 3.6 and 7.6 mg/L, respectively. At the river temperature, the saturation value of DO is 8.5 mg/L, the deoxygenation coefficient, k_d , 0.61 day⁻¹, and the reaeration coefficient, k_r 0.76 day⁻¹. The velocity of the river downstream from the outfall is 0.37 m/s.

- Calculate the ultimate BOD and DO just downstream from the outfall. Assume complete mixing.
- 2) Calculate the DO 16 km downstream from the outfall.
- 3) Calculate the critical time, distance, and the minimum DO.

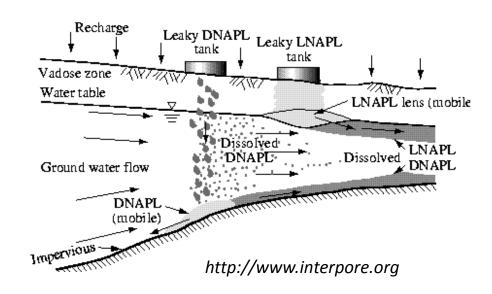
Groundwater quality

- Contamination of groundwater (aquifer) can result from:
 - Discharge from improperly operated or located septic systems
 - Leaking underground storage tanks (USTs)
 - Improper disposal of hazardous and other chemical wastes
 - Spills from pipelines or transportation accidents
 - Recharge of groundwater with contaminated surface water
 - Leaking dumps and landfills
 - Leaking retention ponds or lagoons

http://www.septicrepairny.com

http://www.apexenvirotech.com

Non-aqueous phase liquid (NAPL) in aquifer


- Many chemicals are only sparingly soluble in water
- They may migrate in aquifer as a separate non-aqueous phase

Light NAPL (LNAPL)

- lighter than water, float on the water table
- example: gasoline (includes BTEX)

Dense NAPL (DNAPL)

- Denser than water, sink in the aquifer until reaching an impermeable layer
- Example: TCE, PCE

Transport of dissolved contaminants

- Advection: transport of dissolved contaminants by average movement of groundwater (seepage velocity)
- Dispersion: spreading of contaminants by i) deviation of groundwater velocity from average and ii) molecular diffusion
- Many contaminants move slower than the groundwater seepage velocity because of: sorption (adsorption + absorption)
- Retardation coefficient: the extent to which chemicals are retarded in water

$$R = \frac{v'_{water}}{v'_{cont}}$$

R = retardation coefficient $v'_{water} = see page velocity of groundwater$ $v'_{cont} = linear velocity of contaminant$

Retardation coefficient

For neutral hydrophobic organic contaminants, the retardation coefficient, R, can be obtained by

$$R=1+\left(rac{
ho_b}{\eta}
ight)K_d$$
 ho_b = bulk density of soil (g/cm³) ho_b = porosity of soil ho_d = sorption coefficient of the contaminant between soil and water (cm³/g) = (conc. in soil at equilibrium) / (conc. in water at equilibrium)

As hydrophobic organic contaminants mainly sorb to organic matter in soil, the K_d can be written as

$$K_{d} = K_{oc} \cdot f_{oc}$$
 $K_{oc} = sorption coefficient to the organic carbon fraction of soil (g/cm³)$
 $= (conc. in organic carbon at equilibrium) / (conc. in water at equilibrium)$
 $f_{oc} = fraction of organic carbon in soil$

Thus,

$$R = 1 + \left(\frac{\rho_b}{\eta}\right) K_{oc} \cdot f_{oc}$$

Transport of contaminants in groundwater

Q: A plume of benzene is migrating in groundwater flowing at a seepage velocity of 4.7×10^{-6} m/s. Using the following properties of the aquifer material and benzene, calculate the time for the center of the benzene plume to move 10 m in the direction of groundwater flow.

Aquifer material properties

Bulk density: 1.5 g/cm³

Porosity: 0.4

Fraction of organic carbon: 0.02

Benzene property

Sorption coefficient to the organic

carbon fraction: 27.0 cm³/g

Reading assignment

Textbook Ch 9 p. 403-420, 435-439