
U Kang

Reinforcement Learning

Applications and Case Studies

U Kang
Seoul National University

U Kang

In This Lecture

 Applications of RL
 Solving real-world problems

U Kang

Outline

TD-Gammon
Human-level Video Game Play
Mastering the Game of Go
Conclusion

U Kang

TD-Gammon

 TD-Gammon: one of the most impressive applications of RL, by Gerald
Tesauro

 TD-Gammon required little backgammon knowledge, yet learned to
play extremely well, near the level of the world’s strongest
grandmasters

 The learning algorithm was a straightforward combination of the TD(𝜆)
algorithm and nonlinear FA using a multilayer artificial neural network
(ANN) trained by backpropagating TD errors

U Kang

Backgammon

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Backgammon

 15 white and 15 black pieces on a board of 24 locations, called points
 If a white player just rolled the dice and obtained a 5 and a 2, he can move one

of his pieces 5 steps and one (possibly the same piece) 2 steps. E.g., he could
move two pieces from the 12 point, one to the 17 point, and one to the 14 point

 White’s objective is to advance all of his pieces into the last quadrant (points
19–24) and then off the board

 Hitting: if it were black’s move, he could use the dice roll of 2 to move a piece
from the 24 point to the 22 point, “hitting” the white piece there. Pieces that
have been hit are placed on the “bar” in the middle of the board, from whence
they reenter the race from the start

 However, if there are ≥ 2 pieces on a point, then the opponent cannot move to
that point; the pieces are protected from being hit

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

TD-Gammon

 With 30 pieces and 24 possible locations (26, counting the bar and off-
the-board) it should be clear that the number of possible backgammon
positions is enormous

 The number of moves possible from each position is also large: for a
typical dice roll there might be 20 different ways of playing

 The game tree has an effective branching factor of about 400 (due to
the opponent)

 This is far too large to use the conventional heuristic search methods
that have proved so effective in games like chess and checkers

U Kang

TD-Gammon

 On the other hand, the game is a good match to the capabilities of TD
learning methods

 Although the game is highly stochastic, a complete description of the
game’s state is available at all times

 The game evolves over a sequence of moves and positions until finally
ending in a win for one player or the other, ending the game

 The outcome can be interpreted as a final reward to be predicted
 The number of states is so large that a lookup table cannot be used,

and the opponent is a source of uncertainty

U Kang

TD-Gammon

 TD-Gammon used a nonlinear form of
TD(𝜆)

 The estimated value ො𝑣(𝑠, 𝑤) of any state
(board position) s was meant to
estimate the probability of winning
starting from state s

 Rewards: 0 for all time steps except
those on which the game is won (1)

 Value function: a standard multilayer
ANN with a layer of input units, a layer
of hidden units, and a final output unit

 The input to the network was a
representation of a backgammon
position, and the output was an
estimate of the value of that position

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

TD-Gammon

 Why 198 input units to the network?
 For each point, four units indicated the number of white pieces on the

point. If there were no white pieces, then all four units took on the value
zero

 If there was one piece, then the first unit took on the value 1. This encoded
the elementary concept of a “blot,” i.e., a piece that can be hit by the
opponent

 If there were two or more pieces, then the second unit was set to 1. This
encoded the basic concept of a “made point” on which the opponent cannot
land

 If there were exactly three pieces on the point, then the third unit was set to
1. This encoded the basic concept of a “single spare,” i.e., an extra piece in
addition to the two pieces that made the point

 Finally, if there are n > 3 pieces, the fourth unit was set to (n−3)/2 which
encodes a linear representation of “multiple spares” at the given point

U Kang

TD-Gammon

 Why 198 input units to the network?
 With 4 units for white and 4 for black at each of the 24 points, that made a

total of 192 units
 Two additional units encoded the number of white and black pieces on the

bar (each took the value n/2, where n is the number of pieces on the bar)
 Two more units encoded the number of black and white pieces already

successfully removed from the board (these took the value n/15, where n is
the number of pieces already removed)

 Finally, two units indicated in a binary fashion whether it was white’s or
black’s turn to move

 Basically, Tesauro tried to represent the position in a straightforward way,
while keeping the number of units relatively small

 He provided one unit for each conceptually distinct possibility that seemed
likely to be relevant, and he scaled them to roughly the same range, in this
case between 0 and 1

U Kang

TD-Gammon

 TD-Gammon used the semi-gradient form of the TD(𝜆) algorithm, with
the gradients computed by the error backpropagation

 where 𝑤𝑡 is the vector of all modifiable parameters, and 𝑧𝑡 is a vector
of eligibility traces, one for each component of 𝑤𝑡, updated by

 with 𝑧0 = 0

 For the backgammon application, in which 𝛾 = 1 and the reward is
always zero except upon winning, the TD error portion of the learning
rule is usually just ො𝑣 𝑆𝑡+1, 𝑤 − ො𝑣 𝑆𝑡 , 𝑤

𝑤𝑡+1 ≐ 𝑤𝑡 + 𝛼 𝑅𝑡+1 + 𝛾 ො𝑣 𝑆𝑡+1, 𝑤𝑡 − ො𝑣 𝑆𝑡 , 𝑤𝑡 𝑧𝑡

𝑧𝑡 ≐ 𝛾𝜆𝑧𝑡−1 + 𝛻ොv(𝑆𝑡 , 𝑤𝑡)

U Kang

Reminder: TD(𝝀)

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

TD-Gammon

 To apply the learning rule we need a source of backgammon games
 Tesauro obtained an unending sequence of games by playing his

learning backgammon player against itself
 To choose its moves, TD-Gammon considered each of the 20 or so ways

it could play its dice roll and the corresponding resulting positions
 The resulting positions are afterstates
 The network was consulted to estimate each of their values
 The move was then selected that would lead to the position with the

highest estimated value
 With TD-Gammon making the moves for both sides, it was possible to

easily generate large numbers of backgammon games.
 Each game was treated as an episode, with the sequence of positions

acting as the states, 𝑆0, 𝑆1, 𝑆2, …
 The nonlinear TD rule is used fully incrementally, after each individual

move

U Kang

TD-Gammon

 The weights of the network were set initially to small random values;
the initial evaluations were thus entirely arbitrary

 Because the moves were selected on the basis of these evaluations, the
initial moves were inevitably poor, and the initial games often lasted
hundreds or thousands of moves before one side or the other won,
almost by accident

 After a few dozen games however, performance improved rapidly

U Kang

TD-Gammon

 After playing about 300,000 games against itself, TD-Gammon 0.0 as
described above learned to play approximately as well as the best
previous backgammon computer programs

 This was a striking result because all the previous high-performance
computer programs had used extensive backgammon knowledge

 E.g., the best program at that time was Neurogammon (by Tesauro as
well) that used an ANN but not TD learning
 Neurogammon’s network was trained on a large training corpus of

exemplary moves provided by backgammon experts, and, in addition,
started with a set of features specially crafted for backgammon

 TD-Gammon 0.0, on the other hand, was constructed with essentially
zero backgammon knowledge

 That it was able to do as well as Neurogammon and all other
approaches is striking testimony to the potential of self-play learning
methods

U Kang

TD-Gammon

 The success of TD-Gammon 0.0 with zero expert backgammon
knowledge suggested an obvious modification: add the specialized
backgammon features but keep the self-play TD learning method

 This produced TD-Gammon 1.0 which was much better than previous
programs and found serious competition only among human experts

 TD-Gammon 2.0 (40 hidden units) and TD-Gammon 2.1 (80 hidden
units), were augmented with a selective two-ply search procedure

 To select moves, these programs looked ahead not just to the positions
that would immediately result, but also to the opponent’s possible dice
rolls and moves

 Assuming the opponent always took the move that appeared
immediately best for him, the expected value of each candidate move
was computed and the best was selected

U Kang

TD-Gammon

 To save computer time, the second ply of search was conducted only
for candidate moves that were ranked highly after the first ply, about
four or five moves on average

 Two-ply search affected only the moves selected; the learning process
proceeded exactly as before

 The final versions of the program, TD-Gammon 3.0 and 3.1, used 160
hidden units and a selective three-ply search

 TD-Gammon illustrates the combination of learned value functions and
decision-time search (heuristic search)

U Kang

TD-Gammon

 During the 1990s, Tesauro was able to play his programs in a
significant number of games against world-class human players

 TD-Gammon 3.0 appeared to play at close to, or possibly better than,
the playing strength of the best human players in the world

 TD-Gammon 3.1 had a “lopsided advantage” in piece-movement
decisions, and a “slight edge” in doubling decisions, over top humans

U Kang

TD-Gammon

 TD-Gammon had a significant impact on the way the best human
players play the game

 E.g., it learned to play certain opening positions differently than was
the convention among the best human players

 Based on TD-Gammon’s success and further analysis, the best human
players now play these positions as TD-Gammon does

U Kang

Outline

TD-Gammon
Human-level Video Game Play
Mastering the Game of Go
Conclusion

U Kang

Human-level Video Game Play

 One of the greatest challenges in applying RL to real-world problems is
deciding how to represent and store value functions and/or policies

 Unless the state set is finite and small enough to allow exhaustive
representation by a lookup table—as in many of our illustrative
examples—one must use a parameterized FA scheme

 Whether linear or nonlinear, FA relies on features that have to be
readily accessible to the learning system and able to convey the
information necessary for skilled performance

 Most successful applications of RL owe much to sets of features
carefully handcrafted based on human knowledge and intuition about
the specific problem to be tackled

U Kang

Human-level Video Game Play

 DeepMind developed an impressive demonstration that a deep multi-
layer ANN can automate the feature design process

 Multi-layer ANNs have been used for FA in RL; striking results have
been obtained by coupling RL with backpropagation (e.g., TD-Gammon
and Watson)

 However, in these examples, the most impressive demonstrations
required the network’s input to be represented in terms of specialized
features handcrafted for the given problem

 Mnih et al. (DeepMind) developed a RL agent called deep Q-network
(DQN) that combined Q-learning with a deep convolutional ANN

 Mnih et al. used DQN to show how a RL agent can achieve a high level
of performance on any of a collection of different problems without
having to use different problem-specific feature sets

U Kang

Human-level Video Game Play

 Mnih et al. let DQN learn to play 49 different Atari 2600 video games by
interacting with a game emulator

 DQN learned a different policy for each of the 49 games, but it used the
same raw input, network architecture, and parameter values (e.g., step
size, discount rate, exploration parameters, etc.) for all the games

 DQN achieved levels of play at or beyond human level on a large
fraction of these games

 The games varied widely in other respects; their actions had different
effects, they had different state-transition dynamics, and they needed
different policies for learning high scores

 The deep convolutional ANN learned to transform the raw input
common to all the games into features specialized for representing the
action values required for playing at the high level DQN achieved for
most of the games

U Kang

Human-level Video Game Play

 The Atari 2600 is a home video game
console that was sold in various versions
by Atari Inc. from 1977 to 1992

 Atari 2600 games have been attractive
as testbeds for developing and
evaluating RL methods

 Bellemare, Naddaf, Veness, and Bowling
(2012) developed the publicly available
Arcade Learning Environment (ALE) to
encourage and simplify using Atari 2600
games to study learning and planning
algorithms

https://en.wikipedia.org/wiki/Atari_2600

U Kang

Atari 2600 Games

https://arxiv.org/pdf/1312.5602.pdf

U Kang

Human-level Video Game Play

 Mnih et al. used DQN for the learning
 DQN is similar to TD-Gammon in using a multi-layer ANN as the FA

method for a semi-gradient form of a TD algorithm, with the gradients
computed by the backpropagation

 However, instead of using TD(𝜆) as TD-Gammon did, DQN used the
semi-gradient form of Q-learning

 TD-Gammon estimated the values of afterstates, which were easily
obtained from the rules for making backgammon moves

 To use the same algorithm for the Atari games would have required
generating the next states for each possible action

U Kang

Human-level Video Game Play

 This could have been done by using the game emulator to run single-
step simulations for all the possible actions (which ALE makes
possible), or a model of each game’s state-transition function could
have been learned and used to predict next states

 While these methods might have produced results comparable to
DQN’s, they would have been more complicated to implement and
would have significantly increased the time needed for learning

 Another motivation for using Q-learning was that DQN used the
experience replay method which requires an off-policy algorithm

 Being model-free and off-policy made Q-learning a natural choice

U Kang

Human-level Video Game Play

 Performance of DQN
 Mnih et al. compared the scores of DQN with competitors in 46 games
 The best system from the literature used linear FA with features designed

using some knowledge about Atari 2600 games
 DQN learned on each game by interacting with the game emulator for 50

million frames, which corresponds to about 38 days of experience with the
game

 To evaluate DQN’s skill level after learning, its score was averaged over 30
sessions on each game, each lasting up to 5 minutes and beginning with a
random initial game state

 The professional human tester played using the same emulator
 DQN learned to play better than the best previous RL systems on 40 of the

46 games, and played better than the human player on 22 of the games

U Kang

Human-level Video Game Play

 The breakthrough is that the very same learning system achieved these
levels of play on widely varying games without relying on any game-
specific modifications

 A human playing any of these 49 Atari games sees 210 x 160 pixel
image frames with 128 colors

 To reduce memory and computation, Mnih et al. preprocessed each
frame to produce an 84 x 84 array of luminance values

 Because the full states of many of the Atari games are not completely
observable from the image frames, they “stacked” the four most recent
frames so that the inputs to the network had dimension 84 x 84 x 4

 This did not eliminate partial observability for all of the games, but it
was helpful in making many of them more Markovian

 These preprocessing steps were exactly the same for all 46 games; no
game-specific prior knowledge was involved

U Kang

Human-level Video Game Play

 The basic architecture of DQN is similar to the deep convolutional ANN
 DQN has three hidden convolutional layers, followed by one fully

connected hidden layer, followed by the output layer
 The three successive hidden convolutional layers of DQN produce 32 20

x 20 feature maps, 64 9 x 9 feature maps, and 64 7 x 7 feature maps
 The activation function of the units of each feature map is a rectifier

nonlinearity (max(0, x))
 The 3,136 (64 x 7 x 7) units in this third convolutional layer all connect

to each of 512 units in the fully connected hidden layer, which then
each connect to all 18 units in the output layer, one for each possible
action in an Atari game

U Kang

Human-level Video Game Play

https://www.nature.com/articles/nature14236

U Kang

Human-level Video Game Play

 The activation levels of DQN’s output units were the estimated optimal
action values of the corresponding state–action pairs, for the state
represented by the network’s input

 The assignment of output units to a game’s actions varied from game
to game, and because the number of valid actions varied between 4
and 18 for the games, not all output units had functional roles in all of
the games

 It helps to think of the network as if it were 18 separate networks, one
for estimating the optimal action value of each possible action

 In reality, these networks shared their initial layers, but the output
units learned to use the features extracted by these layers in different
ways

U Kang

Human-level Video Game Play

 DQN’s reward signal indicated how a game’s score changed from one
time step to the next: +1 whenever it increased, −1 whenever it
decreased, and 0 otherwise

 This standardized the reward signal across the games and made a
single step-size parameter work well for all the games

 DQN used an 𝜖-greedy policy, with 𝜖 decreasing linearly over the first
million frames and remaining at a low value for the rest of the learning
session

U Kang

Q-learning: Off-policy TD Control

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Human-level Video Game Play

 After DQN selected an action, the action was executed by the game
emulator, which returned a reward and the next video frame

 The frame was preprocessed and added to the four-frame stack that
became the next input to the network

 DQN used the semi-gradient form of Q-learning to update the weights:

 The gradient was computed by backpropagation
 Mnih et al. used a mini-batch method that updated weights only after

accumulating gradient information over a small batch of images (here
after 32 images)

 This yielded smoother sample gradients compared to the usual
procedure that updates weights after each action

𝑤𝑡+1 = 𝑤𝑡 + 𝛼 𝑅𝑡+1 + 𝛾max
𝑎

ො𝑞 𝑆𝑡+1, 𝑎, 𝑤𝑡 − ො𝑞 𝑆𝑡 , 𝐴𝑡, 𝑤𝑡 𝛻ොq(𝑆𝑡 , 𝐴𝑡, 𝑤𝑡)

U Kang

Human-level Video Game Play

https://arxiv.org/pdf/1312.5602.pdf

U Kang

Human-level Video Game Play

 Mnih et al. modified the basic Q-learning procedure in three ways
 1) Experience replay

 Store the agent’s experience at each time step in a replay memory that is
accessed to perform the weight updates

 After the game emulator executed action 𝐴𝑡 in a state represented by the
image stack 𝑆𝑡, and returned reward 𝑅𝑡+1 and image stack 𝑆𝑡+1, it added
the tuple (𝑆𝑡, 𝐴𝑡, 𝑅𝑡+1, 𝑆𝑡+1) to the replay memory

 This memory accumulated experiences over many plays of the same game
 At each time step multiple Q-learning updates (a mini-batch) were

performed based on experiences sampled uniformly at random from the
replay memory

U Kang

Human-level Video Game Play

 1) Experience replay
 Q-learning with experience replay provided several advantages over the

usual form of Q-learning
 The ability to use each stored experience for many updates allowed DQN to

learn more efficiently from its experiences
 Experience replay reduced the variance of the updates because successive

updates were not correlated with one another as they would be with
standard Q-learning

U Kang

Human-level Video Game Play

 2) Fixed target (for stable learning)
 As in other methods that bootstrap, the target for a Q-learning update

depends on the current action-value function estimate
 Its dependence on 𝑤𝑡 complicates the process compared to the simpler

supervised-learning situation in which the targets do not depend on the
parameters being updated

 Solution: whenever a certain number, C, of updates had been done to the
weights w of the action-value network, they inserted the network’s current
weights into another network and held these duplicate weights fixed for the
next C updates of w

 The outputs of this duplicate network over the next C updates of w were
used as the Q-learning targets

 Letting 𝑞 denote the output of this duplicate network, the update rule was:

𝑤𝑡+1 = 𝑤𝑡 + 𝛼 𝑅𝑡+1 + 𝛾max
𝑎

𝑞 𝑆𝑡+1, 𝑎, 𝑤𝑡 − ො𝑞 𝑆𝑡 , 𝐴𝑡, 𝑤𝑡 𝛻ොq(𝑆𝑡 , 𝐴𝑡, 𝑤𝑡)

U Kang

Human-level Video Game Play

 3) Error clipping
 Goal: to improve stability
 Clipped the error term

 so that it remained in the interval [−1, 1]
 Reminder: the parameter is updated by

𝑤𝑡+1 = 𝑤𝑡 + 𝛼 𝑅𝑡+1 + 𝛾max
𝑎

ො𝑞 𝑆𝑡+1, 𝑎, 𝑤𝑡 − ො𝑞 𝑆𝑡 , 𝐴𝑡, 𝑤𝑡 𝛻ොq(𝑆𝑡 , 𝐴𝑡, 𝑤𝑡)

𝑅𝑡+1 + 𝛾max
𝑎

𝑞 𝑆𝑡+1, 𝑎, 𝑤𝑡 − ො𝑞(𝑆𝑡 , 𝐴𝑡, 𝑤𝑡)

U Kang

Human-level Video Game Play

 Creating artificial agents that excel over a diverse collection of
challenging tasks has been an enduring goal of AI

 The promise of machine learning as a means for achieving this has
been frustrated by the need to craft problem-specific representations

 DeepMind’s DQN stands as a major step forward by demonstrating
that a single agent can learn problem-specific features enabling it to
acquire human-competitive skills over a range of tasks

U Kang

Human-level Video Game Play

 However, DQN is not a complete solution to the problem of task-
independent learning
 All the games were played by observing video images and using CNN
 In addition, DQN’s performance on some of the Atari 2600 games fell short

of human skill levels on these games (e.g., Montezuma’s Revenge)
 https://www.youtube.com/watch?v=TU-h8zLM2jA

 Learning control skills through extensive practice, like DQN learned how to
play the Atari games, is just one of the types of learning humans routinely
accomplish

 Despite these limitations, DQN advanced the state-of-the-art in
machine learning by combining RL and deep learning

U Kang

Outline

TD-Gammon
Human-level Video Game Play
Mastering the Game of Go
Conclusion

U Kang

Mastering the Game of Go

 The ancient Chinese game of Go has challenged AI researchers for
many decades

 Methods that achieve human-level skill in other games have not been
successful in producing strong Go programs

 DeepMind developed the program AlphaGo that broke this barrier by
combining deep ANNs, supervised learning, MCTS, and RL

 In 2016, AlphaGo had been shown to be decisively stronger than other
current Go programs, and it had defeated the European Go champion
Fan Hui 5 games to 0

 Shortly thereafter, a similar version of AlphaGo won stunning victories
over the 18-time world champion Lee Sedol, winning 4 out of a 5
games in a challenge match, making worldwide headline news

 AI researchers thought that it would be many more years, perhaps
decades, before a program reached this level of play

U Kang

Mastering the Game of Go

 We discuss AlphaGo (2016) and a successor program called AlphaGo
Zero (2017)

 In addition to RL, AlphaGo relied on supervised learning from a large
database of expert human moves; however, AlphaGo Zero used only RL
and no human data or guidance beyond the basic rules of the game
(hence the Zero in its name)

 In many ways, both AlphaGo and AlphaGo Zero are descendants of
Tesauro’s TD-Gammon

 All these programs included RL over simulated games of self-play
 AlphaGo and AlphaGo Zero also built upon the progress made by

DeepMind on playing Atari games with the program DQN that used
deep convolutional ANNs to approximate optimal value functions

U Kang

Mastering the Game of Go

 Go game

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Mastering the Game of Go

 Difficulties of AI for Go
 Methods that produce strong play for other games, such as chess, have not

worked as well for Go
 The search space for Go is significantly larger than that of chess because Go

has a larger number of legal moves per position than chess (~ 250 versus ~
35) and Go games tend to involve more moves than chess games (~ 150
versus ~ 80); but the size of the search space is not the major factor that
makes Go so difficult

 Exhaustive search is infeasible for both chess and Go, and Go on smaller
boards (9 x 9) has proven to be exceedingly difficult as well

 Experts agree that the major stumbling block to creating stronger-than-
amateur Go programs is the difficulty of defining an adequate position
evaluation function

 A good evaluation function allows search to be truncated at a feasible depth
by providing relatively easy-to-compute predictions of what deeper search
would likely yield

U Kang

AlphaGo

 Key features of AlphaGo
 It selected moves by APV-MCTS (Asynchronous Policy and Value MCTS), a

novel version of MCTS that was guided by both a policy and a value function
learned by RL with FA provided by deep convolutional ANNs

 Instead of RL starting from random network weights, it started from
weights that were the result of previous supervised learning from a large
collection of human expert moves

U Kang

Monte Carlo Tree Search

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

AlphaGo

 AlphaGo is based on MCTS
 Steps of MCTS

 Selection: uses the action value and prior probabilities

 Prior probabilities (or upper confidence bound):

 Update of action value:
encourage exploration

output from SL policy network 𝑝𝜎

L: leaf node

𝑧𝐿: 1 (win) or -1 (lose)

𝑣𝜃 𝑠𝐿 : value network

𝜆: mixing weight (best=0.5)

from rollout policy

𝑎𝑡 = 𝑎𝑟𝑔𝑚𝑎𝑥𝑎 𝑄(𝑠𝑡 , 𝑎 + 𝑢(𝑠𝑡 , 𝑎))

𝑢 𝑠, 𝑎 ∝
𝑃(𝑠, 𝑎)

1 + 𝑁 𝑠, 𝑎

𝑁 𝑠, 𝑎 =

𝑖=1

𝑛

1(𝑠, 𝑎, 𝑖)

𝑄 𝑠, 𝑎 =
1

𝑁(𝑠, 𝑎)

𝑖=1

𝑛

1 𝑠, 𝑎, 𝑖 𝑉 𝑠𝐿
𝑖

𝑉 𝑠𝐿 = 1 − 𝜆 𝑣𝜃 𝑠𝐿 + 𝜆𝑧𝐿

U Kang

AlphaGo

 MCTS in AlphaGo

https://www.nature.com/articles/nature16961

U Kang

AlphaGo

 Key components of APV-MCTS (Asynchronous Policy and Value MCTS)
 SL policy network 𝑝𝜎(𝑎|𝑠)
 Rollout policy network 𝑝𝜋(𝑎|𝑠)
 Value network 𝑣𝜃(𝑠)
 RL policy network 𝑝𝜌(𝑎|𝑠)

https://www.nature.com/articles/nature16961

U Kang

AlphaGo

 SL policy network 𝑝𝜎(𝑎|𝑠)
 Can be thought of as a classification model, which receives a state as an

input, and outputs action probabilities
 Uses 30 million training data of human moves from KGS Go Server
 13-layer CNN
 The networks’ input was a 19 x 19 x 48 image stack in which each point on

the Go board was represented by the values of 48 binary or integer-valued
features (in a sense, similar to CNN for DQN in Atari Games)

 For each point, one feature indicated if the point was occupied by one of
AlphaGo’s stones, one of its opponent’s stones, or was unoccupied, thus
providing the “raw” representation of the board configuration

 Other features were based on the rules of Go, such as the number of
adjacent points that were empty, the number of opponent stones that
would be captured by placing a stone there, the number of turns since a
stone was placed there, and other features that the design team considered
to be important

U Kang

AlphaGo

https://www.nature.com/articles/nature16961

U Kang

AlphaGo

 Rollout policy network 𝑝𝜋(𝑎|𝑠)
 Can be thought of as a classification model, which receives a state as an

input, and outputs action probabilities
 A simple linear network for fast simulation

U Kang

AlphaGo

 Value network 𝑣𝜃(𝑠)
 The value network had the same structure as SL policy network except that

it had a single output unit that gave estimated values of game positions
instead of the SL policy network’s probability distributions over legal actions

 They divided the process of training the value network into two stages
 In the first stage, they learned RL policy network 𝑝𝜌(𝑎|𝑠) using policy

gradient method (REINFORCE) via self-play games
 𝑝𝜌(𝑎|𝑠) has the same structure as the SL policy network. It was

initialized with the final weights of the SL policy network that were
learned via supervised learning

 In the second stage, the value network 𝑣𝜃(𝑠) was trained with MC policy
evaluation on data obtained from a large number of simulated self-play
games with moves selected by the RL policy network 𝑝𝜌(𝑎|𝑠)

U Kang

AlphaGo

 Key components of APV-MCTS (Asynchronous Policy and Value MCTS)
 SL policy network 𝑝𝜎(𝑎|𝑠)
 Rollout policy network 𝑝𝜋(𝑎|𝑠)
 Value network 𝑣𝜃(𝑠)
 RL policy network 𝑝𝜌(𝑎|𝑠)

https://www.nature.com/articles/nature16961

U Kang

AlphaGo

 Why the SL policy was used instead of the better RL policy to select
actions in the expansion phase of APV-MCTS ?
 These policies took the same amount of time to compute because they used

the same network architecture
 The team actually found that AlphaGo played better against human

opponents when APV-MCTS used as the SL policy instead of the RL policy
 They conjectured that the reason for this was that the latter was tuned to

respond to optimal moves rather than to the broader set of moves
characteristic of human play

 Interestingly, the situation was reversed for the value function used by APV-
MCTS

 They found that when APV-MCTS used the value function derived from the
RL policy, it performed better than if it used the value function derived from
the SL policy

U Kang

AlphaGo Zero

 Building upon the experience with AlphaGo, DeepMind developed
AlphaGo Zero

 In contrast to AlphaGo, this program used no human data or guidance
beyond the basic rules of the game (hence the Zero in its name)

 It learned exclusively from self-play RL, with input giving just “raw”
descriptions of the placements of stones on the Go board

 AlphaGo Zero implemented a form of policy iteration, interleaving
policy evaluation with policy improvement

 AlphaGo Zero used MCTS to select moves throughout self-play RL,
whereas AlphaGo used MCTS for live play after—but not during—
learning

 Other differences besides not using any human data or human-crafted
features are that AlphaGo Zero used only one deep convolutional ANN
and used a simpler version of MCTS

U Kang

AlphaGo Zero

 A deep neural network 𝑓𝜃 with parameter 𝜃 takes as an input the raw
board representation s of the position and its history, and outputs both
move probabilities and a value, 𝒑, 𝑣 = 𝑓𝜃(𝑠)

 This neural network combines the policy network and value network
into a single architecture

 The neural network consists of many residual blocks of convolutional
layers with batch normalization and rectifier nonlinearities

U Kang

AlphaGo Zero

 The neural network in AlphaGo Zero is trained from games of self-play
by a novel RL algorithm

 In each position s, an MCTS search is executed, guided by the neural
network 𝑓𝜃

 The MCTS search outputs probabilities 𝜋 of playing each move. These
search probabilities usually select much stronger moves than the raw
move probabilities 𝒑 of the neural network 𝑓𝜃 𝑠 ; MCTS may therefore
be viewed as a powerful policy improvement operator

 Self-play with search (using the improved MCTS-based policy to select
each move, then using the game winner 𝑧 as a sample of the value)
may be viewed as a powerful policy evaluation operator

U Kang

AlphaGo Zero

 The main idea is to use these search operators repeatedly in a policy
iteration procedure

 The neural network’s parameters are updated to make the move
probabilities and value 𝒑, 𝑣 = 𝑓𝜃(𝑠) more closely match the improved
search probabilities and self-play winner (𝜋, 𝑧)

 These new parameters are used in the next iteration of self-play to
make the search even stronger

U Kang

AlphaGo Zero
https://www.nature.com/articles/nature24270

U Kang

AlphaGo Zero

 MCTS of AlphaGo Zero
 The MCTS uses the neural network 𝑓𝜃 to guide its simulations
 Each edge (s, a) in the search tree stores a prior probability P(s, a), a visit

count N(s, a), and an action value Q(s, a)
 Each simulation starts from the root state and iteratively selects moves that

maximize an upper confidence bound Q(s, a) +U(s, a), where U(s, a) ∝P(s, a)
/ (1 +N(s, a)), until a leaf node s′ is encountered

https://www.nature.com/articles/nature24270

U Kang

AlphaGo Zero

 MCTS of AlphaGo Zero
 This leaf position is expanded and evaluated only once by the network to

generate both prior probabilities and evaluation, (P(s′ , ·),V(s′)) = 𝑓𝜃(𝑠)
 Each edge (s, a) traversed in the simulation is updated to increment its visit

count N(s, a), and to update its action value to the mean evaluation over
these simulations, 𝑄 𝑠, 𝑎 = [σ𝑠′|𝑠,𝑎→𝑠′𝑉(𝑠

′)]/𝑁(𝑠, 𝑎) where 𝑠, 𝑎 → 𝑠′

indicates that a simulation eventually reached 𝑠’ after taking move 𝑎 from
position 𝑠 https://www.nature.com/articles/nature24270

U Kang

AlphaGo Zero

 MCTS of AlphaGo Zero
 MCTS may be viewed as a self-play algorithm that, given neural network

parameters 𝜃 and a root position 𝑠, computes a vector of search
probabilities recommending moves to play, 𝝅 = 𝛼𝜃(𝑠), proportional to the
exponentiated visit count for each move, 𝜋𝑎 ∝ 𝑁(𝑠, 𝑎)1/𝜏, where 𝜏 is a
temperature parameter.

https://www.nature.com/articles/nature24270

U Kang

AlphaGo Zero

 Training of AlphaGo Zero’s ANN
 The ANN is trained by a self-play RL that uses MCTS to play each move

https://www.nature.com/articles/

nature24270

U Kang

AlphaGo Zero

 Training of AlphaGo Zero’s ANN
 First, the neural network is initialized to random weights 𝜃0
 At each subsequent iteration 𝑖 ≥ 1, games of self-play are generated
 At each timestep t, an MCTS search 𝝅𝑡 = 𝛼𝜃𝑖−1(𝑠𝑡) is executed using the

previous iteration of neural network 𝑓𝜃𝑖−1 and a move is played by sampling
the search probabilities 𝝅𝑡

 A game terminates at step T when both players pass, when the search value
drops below a resignation threshold or when the game exceeds a
maximum length; the game is then scored to give a final reward of 𝑟𝑇 ∈
{−1,+1}

 The data for each timestep t is stored as (𝑠𝑡 , 𝝅𝑡, 𝑧𝑡), where 𝑧𝑡 = ±𝑟𝑇 is the
game winner from the perspective of the current player at step t

U Kang

AlphaGo Zero

 Training of AlphaGo Zero’s ANN
 In parallel, new network parameters 𝜃𝑖 are trained from data (𝑠, 𝝅, 𝑧)

sampled uniformly among all timesteps of the last iteration(s) of self-play
 The neural network 𝒑, 𝑣 = 𝑓𝜃𝑖(𝑠) is adjusted to minimize the error

between the predicted value v and the self-play winner z, and to maximize
the similarity of the neural network move probabilities 𝒑 to the search
probabilities 𝝅

 Specifically, the parameters 𝜃 are adjusted by gradient descent on a loss
function l that sums over the mean-squared error and cross-entropy losses,
respectively

𝑝, 𝑣 = 𝑓𝜃 𝑠 𝑎𝑛𝑑 𝑙 = 𝑧 − 𝑣 2 − 𝜋⊤𝑙𝑜𝑔𝑝 + 𝑐 𝜃 2

U Kang

AlphaGo Zero

 Features of AlphaGo Zero’s ANN
 The network took as input a 19 x 19 x 17 image stack consisting of 17 binary

feature planes
 The first 8 feature planes were raw representations of the positions of the

current player’s stones in the current and seven past board configurations:
a feature value was 1 if a player’s stone was on the corresponding point,
and was 0 otherwise

 The next 8 feature planes similarly coded the positions of the opponent’s
stones

 A final input feature plane had a constant value indicating the color of the
current play: 1 for black; 0 for white

U Kang

AlphaGo Zero

 AlphaGo Zero’s performance
 DeepMind team trained AlphaGo Zero over 4.9 million games of self-play,

which took about 3 days; each move of each game was selected by running
MCTS for 1,600 iterations, taking approximately 0.4 second per move

 Network weights were updated over 700,000 batches each consisting of
2,048 board configurations

 They then ran tournaments with the trained AlphaGo Zero playing against
the version of AlphaGo that defeated Fan Hui by 5 games to 0, and against
the version that defeated Lee Sedol by 4 games to 1

 The Elo ratings of AlphaGo Zero, the version of AlphaGo that played against
Fan Hui, and the version that played against Lee Sedol were respectively
4,308, 3,144, and 3,739

 In a match of 100 games between AlphaGo Zero, and the exact version of
AlphaGo that defeated Lee Sedol held under the same conditions that were
used in that match, AlphaGo Zero defeated AlphaGo in all 100 games

U Kang

AlphaGo Zero

 AlphaGo Zero’s performance
 The DeepMind team also compared AlphaGo Zero with a program using an

ANN with the same architecture but trained by supervised learning to
predict human moves in a data set containing nearly 30 million positions
from 160,000 games

 They found that the supervised-learning player initially played better than
AlphaGo Zero, and was better at predicting human expert moves, but
played less well after AlphaGo Zero was trained for a day

 This suggested that AlphaGo Zero had discovered a strategy for playing that
was different from how humans play

 In fact, AlphaGo Zero discovered, and came to prefer, some novel variations
of classical move sequences

U Kang

AlphaGo Zero

 AlphaGo Zero soundly demonstrated that superhuman performance
can be achieved by pure RL, augmented by a simple version of MCTS,
and deep ANNs with very minimal knowledge of the domain and no
reliance on human data or guidance

U Kang

Outline

TD-Gammon
Human-level Video Game Play
Mastering the Game of Go
Conclusion

U Kang

Conclusion

 RL has been used for many interesting applications
 TD-Gammon
 Watson’s daily-double wagering
 Optimizing memory control
 Human-level video game play
 Go
 Personalized web services
 Thermal soaring

 There are many interesting opportunities for novel applications by RL

U Kang

Questions?

