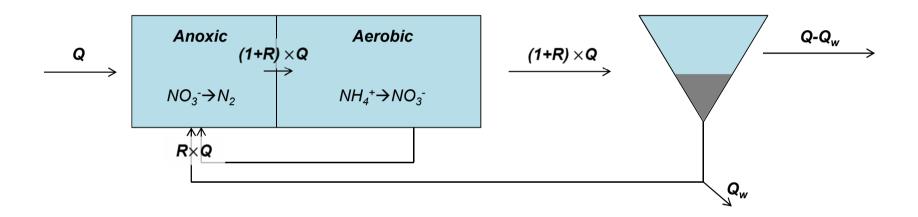
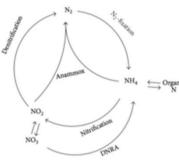

Water Quality & Environment Lab., SNU

Harvesting high-purity ammonium salt from wastewater via membrane contact and solvent-driven fractional crystallization

Nitrogen (N) in wastewater – treatment needs


- Eutrophication problem; ammonia (NH₃) toxicity; health impact by nitrate (NO₃-)
- ~ 50 mg N/L in domestic wastewater (sewage) \rightarrow < 20 mg/L discharge limit (S. Korea)
- Most Korean wastewater treatment plants adopt biological N removal process


How to achieve enhanced N removal?

Preanoxic denitrification [e.g., Modified Ludzack-Ettinger (MLE) process]

- If 100% efficiency in each segment, removal efficiency = R/(1+R) x 100 (%)
 - Reactor size increases by a factor of (1+R)
 - Energy ++ for aeration & pumping
- $\mathbf{NH_4^+}$ [N(-III); high value] $\rightarrow \mathbf{NO_3^-}$ [N(+V); lower value] $\rightarrow \mathbf{N_2}$ [N(0); no value]

N removal from wastewater – suggested alternatives for sewage

Anammox: $NO_2^-+NH_4^+ \rightarrow N_2$

- 1-2 yrs for reactor setup
- Operational challenges
- No potential for N utilization

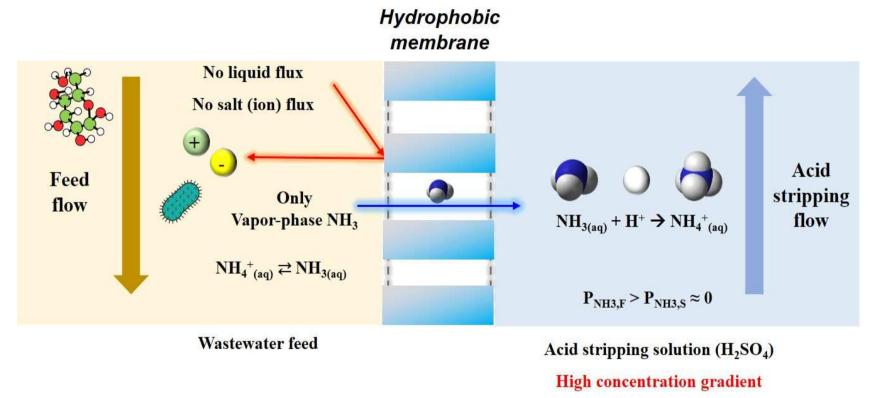
Struvite (NH₄MgPO₄·6H₂O)

formation

- NH₄⁺:Mg²⁺ :PO₄³⁻ = 1:1:1 ratio (molar)
- Impurities

Ion exchange (+ IX resin regen

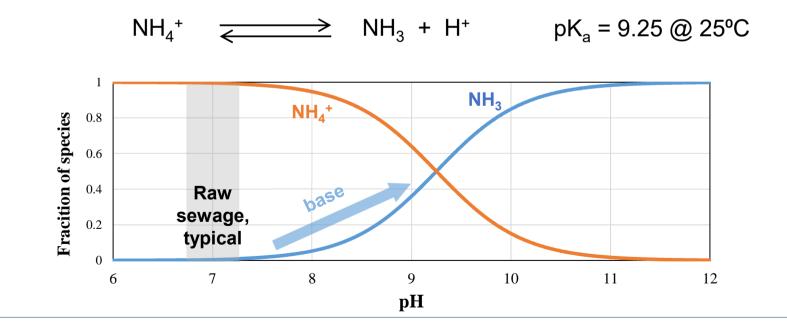
for NH₄⁺ recovery)


- Cost & environ. impacts (brine for regen)
- Coexistence of other cations in regen solution

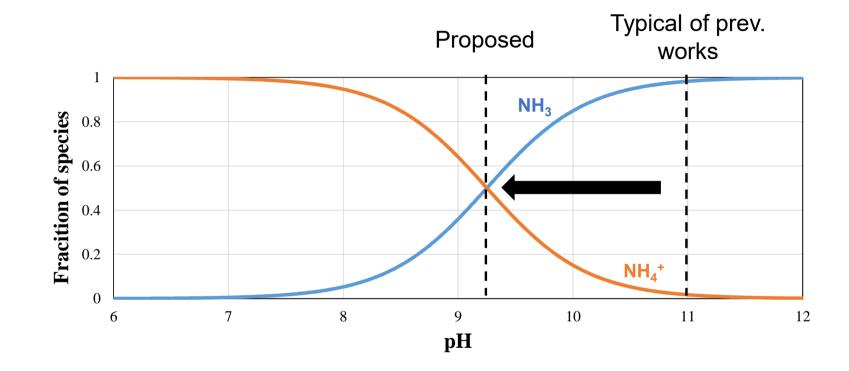
Ammonia stripping

- High cost, limited efficiency
- Scaling issue

Ammonia extraction from sewage using membrane contactor

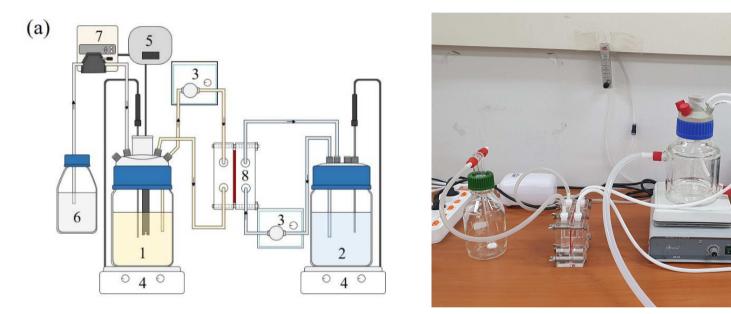


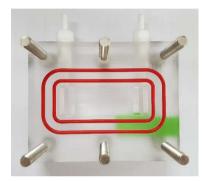
- **Complete rejection** of liquid water-carrying impurities \rightarrow high purity product
- Feed \rightarrow strip flux ensured as long as the strip solution pH is low enough
- Holds generic advantages of membrane processes: scalability, low areal footprint


Challenge I – chemical cost

• For reasonable NH₃-N flux, base should be added to the feed solution (sewage)

Does it make sense to spend chemicals to raise pH of a massive amount of sewage??

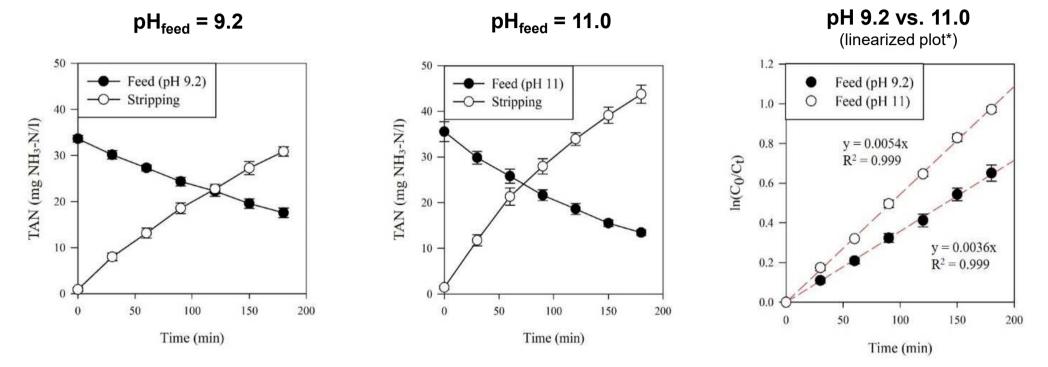

A simple idea: What if we apply lower pH_{feed}?

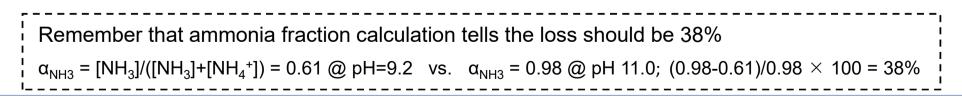


- We may get some loss in kinetics but instead we get chemical cost savings
- How much loss? vs. How much benefit?

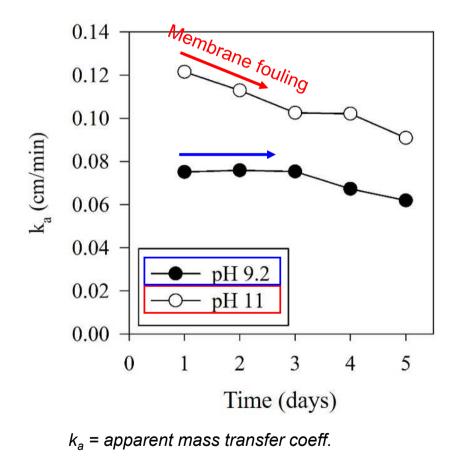
Experimental setup

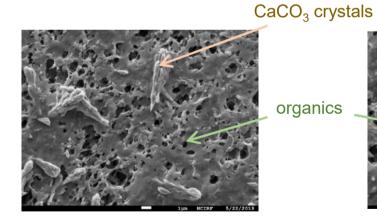
DCMD (direct contact membrane distillation) system

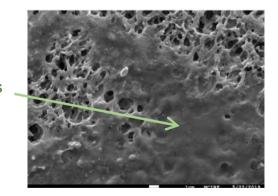



- Used <u>real sewage</u> as a feed, $0.1 \text{ N H}_2\text{SO}_4$ as a stripping solution
- Polyvinylidene fluoride (PVDF) membrane
- pH_{feed} maintained @ 9.2 or 11.0

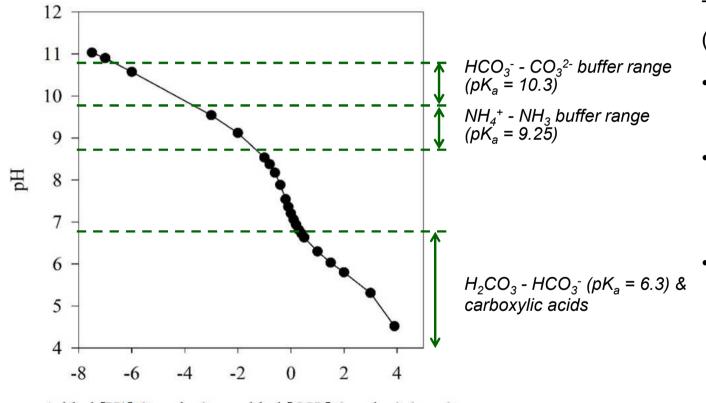
3-hr experiments


*slope = rate const.


Only 25% loss in kinetics by pH_{feed} 11.0 → 9.2 (@ 30 °C)


5-d experiments

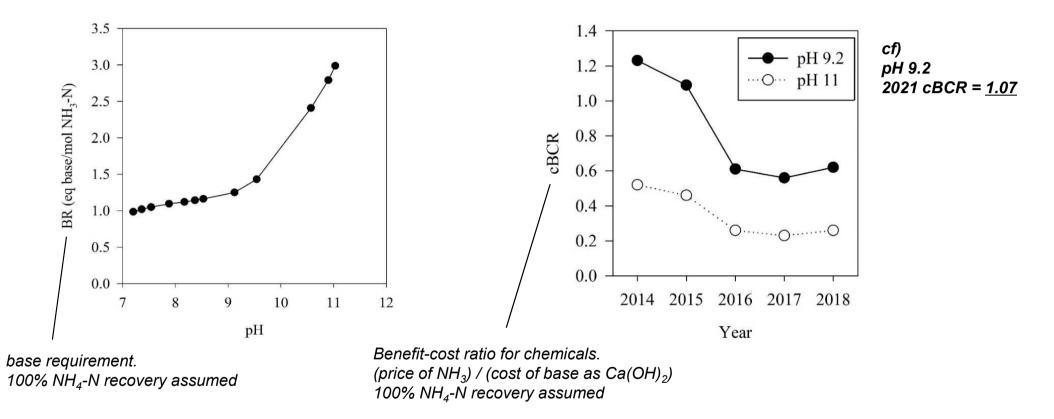
- Smaller rate gap b/w pH_{feed} = 9.2 & 11.0 at longer operation period
- Low pH_{feed} much less prone to inorganic fouling



SEM image, **pH**_{feed} = 11.0

SEM image, **pH**_{feed} = 9.2

Sewage pH titration



Titration path from raw sewage (pH ~7) to pH 11.0

- pH ~7 → ~8.7: no significant buffer, low base consumption
- pH ~8.7 → ~9.7: base consumed to deprotonate the one we want to
- pH ~9.7 → 11.0: base mostly consumed to deprotonate
 HCO₃⁻, etc.

Added [H⁺] (+ value) or added [OH⁻] (- value) (meq)

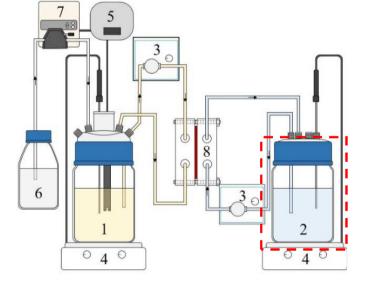
Chemical cost is affordable

- 1.25 eq base / mol NH₃-N @ pH_{feed} = 9.2
 cf) 2.99 eq base/mol NH₃-N @ pH_{feed} = 11.0
- Can be net-profitable in terms of benefit of chemical recovery vs. chemical cost

Rate is enough @ pH_{feed} = 9.2

Using the mass transfer coefficient we measured, assuming sewage NH_3 -N conc. of 55 mg N/L & applying a typical value of membrane packing density, we calculate:

 $\frac{Membrane\ module\ volume}{Sewage\ (feed)flowrate} = \frac{V_M}{Q_F} = 3.9\ min \qquad (50\%\ removal)$ $= 12.9\ min \qquad (90\%\ removal)$

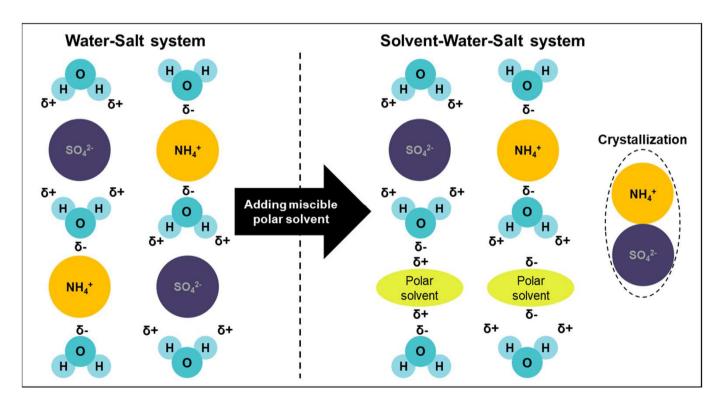

cf) biological N removal (current)

$$HRT = \frac{effective \ volume \ of \ reactor}{Sewage \ flow rate} = \frac{V_{eff}}{Q_F} = 5 \sim 15 \ h$$

typical range of removal efficiency = 50-65%

Challenge II – product usability

- Salt of NH₄⁺ + acid anion (e.g., (NH₄)₂SO₄) → fertilizer
- Product obtained in the form of aqueous solution → difficulty in handling & transportation

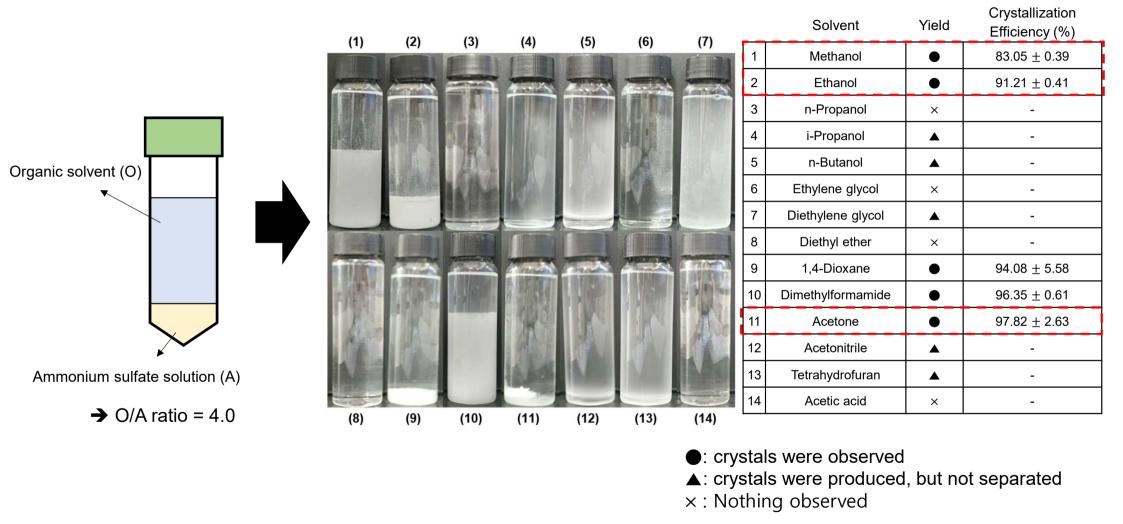

<연도별, <u>비종별</u> 생산 실적>

(단위 : 천톤) 구 분 1994년 1997년 2002년 2003년 Ò 소 904 900 360 234 황산암모늄 480 537 521 511 석회질소 _ _ _ _ 복 합 비 료 2,717 2,321 2,265 2,434 인산질비료 171 132 65 56 가리질비료 67 119 74 70 합 계 4,339 3,983 3,301 3,315

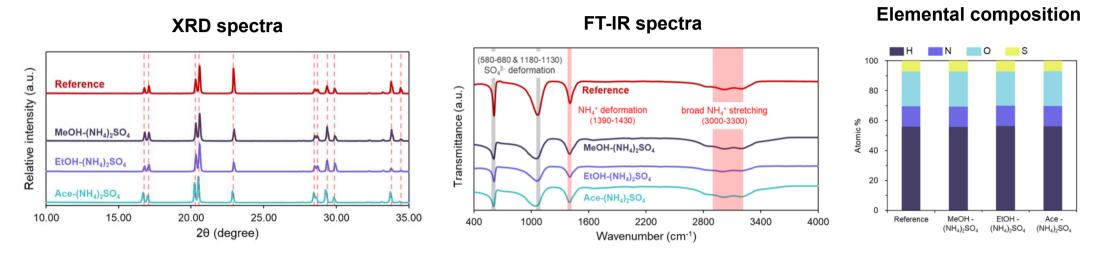
자료출처 : 한국비료공업협회

Solvent-driven fractional crystallization (SDFC)

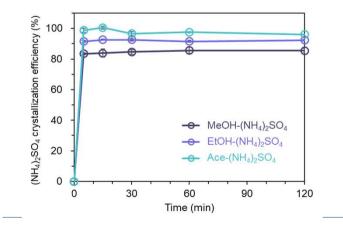
- Very rapid crystallization
- High crystallization efficiency



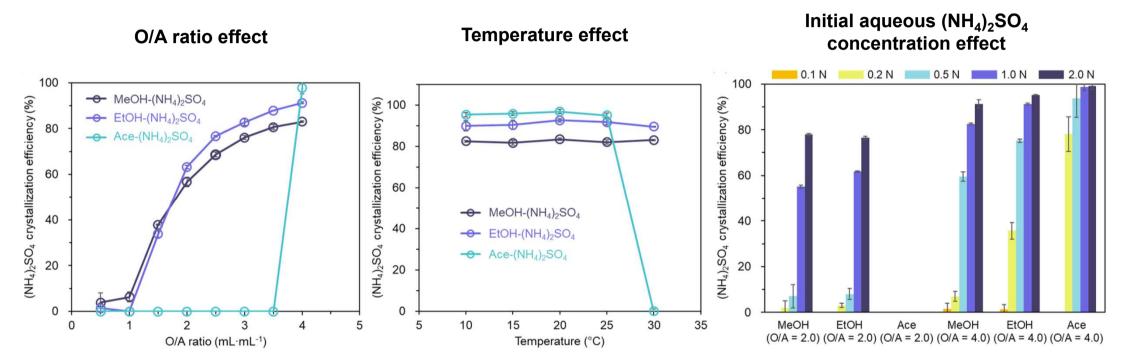
Candidate solvents


	Surface tension (dyn/cm, 20 °C)	Viscosity (cp, 25 °C)	Vapor pressure (mmHg, 20 °C)	Dipole moment (D)	Dielectric constant (20 °C)	Polarity	Specific heat (cal/mol /°C)	IDLH (ppm)	OES-TWA (ppm)	OES-STEL (ppm)	Odor threshold (ppm)	POCP
Methanol	22.6	0.6	103	1.7	32.6	76.2	19.5	25,000	200	250	6,000	12.3
Ethanol	22.3	1.08	45.7	1.7	22.4	65.4	27	-	1,000	-	6,000	27
n-propanol	23.7	1.72	13.4	1.7	20.1	61.7	34	4,000	200	250	45	45
i-propanol	21.7	2	35.1	1.66	18.3	54.6	37	20,000	400	500	60	15
n-butanol	24.6	3	4.8	1.66	18.2	60.2	41	8,000	50	75	80	40
Ethylene glycol	46.5	20	0.12	2.31	37.7	79.0	35	-	60	125	-	-
Diethylene glycol	48.5	34	0.019	2.31	31.7	71.3	58.4	-	-	-	-	-
Diethyl ether	17	0.24	462	1.3	4.3	11.7	40	19,000	400	500	1	60
1,4-dioxane	40	1.3	32	0.4	2.21	16.4	36	200	25	100	170	-
Dimethyl formamide	35	0.82	3.8	3.8	36.7	40.4	36	3,500	10	20	100	-
Acetone	23.3	0.33	194	2.9	20.6	35.5	30	20,000	750	1,500	300	17.8
Acetonitrile	29.1	0.38	71	3.2	37.5	46	22	4,000	40	60	40	-
Tetrahydro furan	28	0.55	133	1.75	7.6	21	36	-	100	200	30	133
Acetic acid	27.4	1.13	13	1.7	6.2	64.8	29.4	1,000	10	15	2	-

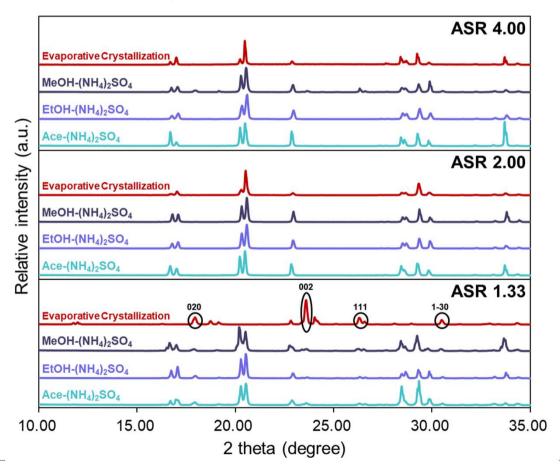
Polarity, polarity relative to water at 100; IDLH (immediately dangerous to life or health), a maximum vapor concentration from which a person can escape within 30 min without irreversible health damage or effects that would impair their ability to escape; OES (occupational exposure standard), exposure to a solvent in the air at which there is no indication that injury is caused to people, even if it takes place on a day-after-day basis; OES-TWA (occupational exposure standard – 8 h time-weighted average); OES-STEL (occupational exposure standard – 15 min short-term exposure limit); POCP (photochemical ozone creation potential), POCP relative to ethylene at 100 and the very stable organics at 0; Ref. (reference)


Solvent screening

Crystal analysis & crystallization rate



Crystallization rate


- XRD, FT-IR, elemental analysis all confirm the crystals are (NH₄)₂SO₄ (exact match with the reference)
- Crystallization completed within 5 min @ 25 °C very rapid

Effect of mixture conditions: O/A ratio, temperature, initial aqueous (NH4)₂SO₄ conc.

- Acetone very sensitive to O/A ratio & temperature
- Initial aqueous (NH₄)₂SO₄ concentration important for all solvents (: salt dissolved in excess of saturation concentration precipitates)

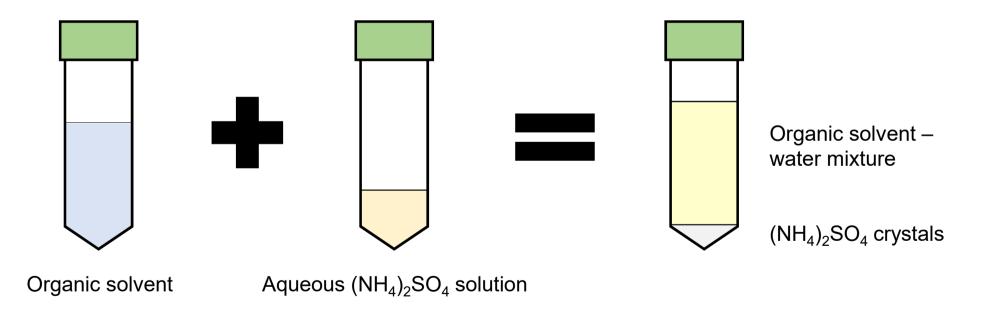
Crystals obtained at different ammonium-to-sulfate (ASR) ratio

X-ray diffraction (XRD) spectra

 $(NH_4)_2SO_4$ -- salt of ammonium & sulfate at 2:1 molar ratio

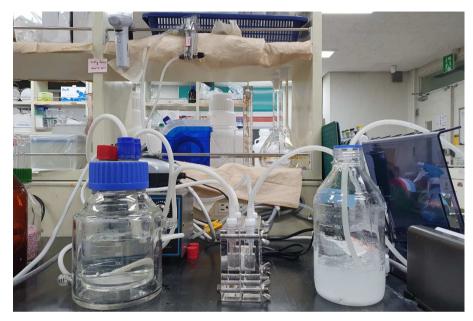
Solvent-driven fractional crystallization:

Always produces pure (NH₄)₂SO₄


VS.

Evaporative crystallization:

Significant production of $(NH_4)_3H(SO_4)_2$) at ASR lower than 2:1


Challenge III – solvent reuse

- Crystals obtained by mixing the aqueous $(NH_4)_2SO_4$ solution with an organic solvent
- High cost of organic solvents how can they be reused?

Variability in the stripping method

Takeaway

 It may be economically feasible (or beneficial) to recover ammonia from sewage using membrane contactor

It is not the volume, but the pH buffering capacity that matters!

- Solvent-driven fractional crystallization allows obtaining pure (NH₄)₂SO₄ crystals from aqueous ammonium sulfate solutions
- By combining liquid-gas membrane contact with solvent-driven fractional crystallization, it is possible to harvest ammonia in solid form from wastewater without consumption of organic solvents

