Water treatment I

Water treatment I

- Water treatment process overview
- Coagulation & flocculation
- Softening (removing hardness)

Water treatment

- Goal of municipal water treatment: to provide water that is both potable and palatable
 - potable: safe to drink; palatable: pleasant to drink
- Factors determining drinking water quality
 - Physical: color and turbidity, temperature, taste and odor
 - Chemical: toxic chemicals and chemicals that make water non-palatable
 - Microbiological: pathogens
 - Radiological: ex) uranium

Indicator for pathogens

- Indicator is needed for pathogens because it is not practical to analyze all different species
- Total coliforms
 - Most frequently used indicator for pathogens
 - Reasons for using total coliforms as an indicator:
 - Inhabit the intestinal tracks of humans and other mammals
 - Exist in large numbers in individuals
 - Survive in natural waters for relatively long without growth
 - Relatively easy to analyze

Sources of drinking water

- Surface water
 - Variable composition
 - Low mineral content
 - Low hardness
 - High turbidity
 - Colored
 - DO present

Groundwater

- Constant composition
- High mineral content
- High hardness
- High Fe, Mn
- Low turbidity
- Low color
- Low DO

Water treatment systems

Coagulation plant: conventional surface water treatment

Water treatment systems

Water softening plant: for groundwater with high hardness

Particle removal in water

- In surface water treatment, remove particles first
- Concerns involved in particles in water

Particles...

- Cause turbidity and color in water
- Clog filters, foul membranes, reduce disinfection efficiency

And some particles...

- Are pathogenic (viruses, bacteria, cysts, ...)
- Harbor pathogens
- Have toxic substances
- Are involved in disinfection byproduct formation

Colloids

- Small particles (0.001 to 1 μm)
- Usually negatively charged
- Stability of colloidal suspension
 - "Stable" colloidal suspension:
 particles are like-charged (usually (-) charge)
 - → particles repel each other
 - → particles do not stick together or settle down easily
 - Destabilization of colloidal suspension: neutralizing the particle charge so that the particles can stick together and settle down

Colloids – electrical double layer

- Ion distribution near the charged colloid is different from the bulk liquid
- Stern layer: rigid layer, ions attached to particle
- Diffuse layer: ions are mobile

Colloids – electrical double layer

- Need "jumping" the energy barrier for particle adhesion
- Ways to reduce the energy barrier
 - Reduce the surface charge of the particle
 - Increase the ionic strength of the solution (compresses the electrical double layer)

11

Coagulation-flocculation

- Coagulation-flocculation process is used to remove colloidal particles from water
 - Coagulation: a <u>chemical</u> process; change the particle surface properties so that particles can stick together when they collide
 - Flocculation: a <u>physical</u> process; create conditions that allows particles to grow in size
- Result: formation of a "floc" (larger, settleable particles)

http://www.wrights-trainingsite.com/ WT%20coagfloconb.html

Mechanisms of Coagulation-flocculation

- Charge neutralization
- Compression of the electric double layer
- Inter-particle bridging
- Enmeshment in a precipitate

Coagulation

- Goal: To alter the surface charge of the particles so that the particles can stick together to form an initial "floc"
- Coagulants: chemicals added to water for coagulation
- Metal salts or polymeric materials are used as coagulants

- Among metal ions, trivalent ions are most effective
- For some coagulants, charge reversal may occur if overdosed (-) → (+)

Coagulants

- Key properties
 - Trivalent cation (if a metal salt is to be used)
 - Nontoxic
 - Insoluble in neutral pH
- Commonly used coagulants
 - Al $^{3+}$ or Fe $^{3+}$ salts
 - Alum $(Al_2(SO_4)_3 \cdot 14H_2O)$: most common
 - Alum dissolution: $Al_2(SO_4)_3 \cdot 14H_2O \leftrightarrow 2Al^{3+} + 3SO_4^{2-} + 14H_2O$
 - Ferric (Fe³⁺) cations: $Fe_2(SO_4)_3 \cdot 7H_2O$, $FeCl_3 \cdot 7H_2O$

Flocculation

- Goal: allow particles to grow by gentle mixing so that they can easily settle
- Usually configured as a three step process
- Too little mixing not
 enough energy for particles
 to stick together
- Too much mixing → particles break down

http://chemistry.tutorvista.com

http://www.tech-fag.com

Softening

- Goal: to reduce hardness of water
- Hardness
 - The term used to characterize a water that does not lather well, causes a scum, and leaves scales
 - Caused by polyvalent cations (+2, +3, ...)

http://www.watersoftenerbest.blogspot.com

http://www.proenv.com

Formation of hardness

- As rainwater infiltrates, the water gets CO₂ by the respiration of microorganisms
- Recall $CO_2 + H_2O \rightarrow H_2CO_3$
- Carbonic acid (H₂CO₃) dissolves limestone (CaCO₃, MgCO₃)
- Hardness is of concern in limestone areas

- Total hardness (TH)
 - Technically: the sum of all polyvalent cations

$$TH = (Ca^{2+}) + (Mg^{2+}) + (Fe^{3+}) + (Fe^{2+}) + (Ba^{2+}) + \cdots$$
$$= \sum_{i=1}^{n} (X^{m+})_i$$

Practically (most of the time): the sum of Ca²⁺ and Mg²⁺

$$TH \cong (Ca^{2+}) + (Mg^{2+})$$

- Carbonate and noncarbonate hardness
 - Total hardness (TH) is divided into carbonate (CH) and noncarbonate (NCH) hardness (TH = CH + NCH)
 - Carbonate hardness: the maximum amount of hardness that can be associated with carbonates (HCO_3^- and CO_3^{2-})
 - When TH > Alk (\approx [HCO₃⁻] + 2[CO₃²⁻]), CH = Alk, NCH = TH CH
 - When **TH** ≤ **Alk**, **CH** = **TH**, NCH = 0

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

Units

- eq/L or meq/L
- mg/L as CaCO₃ (recall alkalinity unit)
- Unit conversion: $(mg/L \text{ as } CaCO_3) = 50 \text{ x } (meq/L)$ (as $CaCO_3$ is 50 mg/meq)

Term	Concentration range (mg/L as CaCO ₃)		
Soft	<17.1		
Slightly hard	17.1-60		
Moderately hard	60-120		
Hard	120-180		
Very hard	>180		

Q: A sample of water having a pH of 7.0 has the following concentration of ions. Calculate the total hardness and the carbonate hardness of the water sample.

Ion	Concentration (mg/L)	Ion	Concentration (mg/L)	
Ca ²⁺	40	HCO ₃ -	110	
Mg ²⁺	10	SO ₄ ²⁻	67.2	
Na ⁺	11.8	Cl-	11	
K ⁺	7.0			

Lime-soda softening

- Addition of lime (Ca(OH)₂) and soda ash (Na₂CO₃)
- Precipitates Ca²⁺ and Mg²⁺ using following reactions:

$$Ca^{2+} + CO_3^{2-} \rightleftharpoons CaCO_3(s)$$

 $Mg^{2+} + 2OH^- \rightleftharpoons Mg(OH)_2(s)$

- Target on Ca²⁺ and carbonate hardness first, leaving as much Mg²⁺ and noncarbonate hardness as possible
 - pH of water should be ~10.3 for Ca²⁺ precipitation and ~11 for Mg²⁺ precipitation
 - Have to provide CO₃²⁻ for noncarbonate hardness

Reading assignment

Textbook Ch 10 p. 453-481

Slide#22 solution)

Don't have to consider Na⁺, K⁺, SO₄²⁻ and Cl⁻

Ion	Conc. (mg/L)	Ion weight	Conc. (mM)	Conc. (meq/L)
Ca ²⁺	40	40	1.0	2.0
Mg ²⁺	10	24.3	0.41	0.82
HCO ₃ -	110	61	1.8	1.8

$$TH = (Ca^{2+}) + (Mg^{2+}) = 2.8 \text{ meq/L}$$
 $TH \text{ in } mg/L \text{ as } CaCO_3 = 2.8 \text{ meq/L } \times 50 \text{ mg/meq} = 140 \text{ mg/L as } CaCO_3$
 $Since (Ca^{2+}) + (Mg^{2+}) > (HCO_3^{-}),$
 $CH = (HCO_3^{-}) = 1.8 \text{ meq/L} = 90 \text{ mg/L as } CaCO_3$
 $NCH = TH - CH = 140 - 90 = 50 \text{ mg/L as } CaCO_3$