Water treatment

Water treatment

- Water treatment process overview
- Concepts and practices of each process
 - Coagulation and flocculation
 - Softening (removing hardness)
 - Sedimentation
 - Filtration
 - Disinfection
 - Sludge treatment and disposal

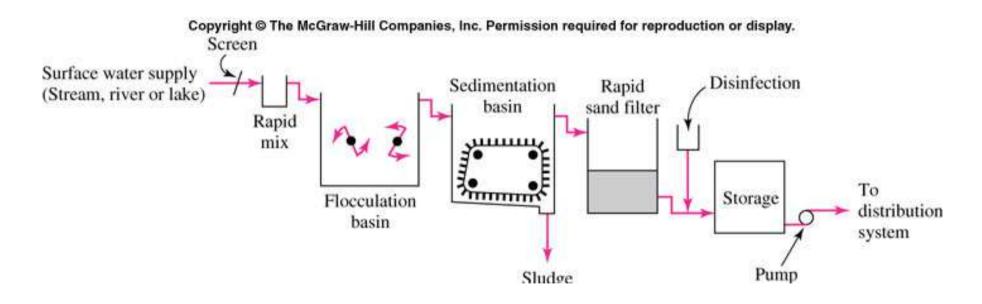
- Goal of municipal water treatment: to provide water that is both potable and palatable
 - potable: safe to drink; palatable: pleasant to drink
- Factors determining drinking water quality
 - Physical: color and turbidity, temperature, taste and odor
 - Chemical: toxic chemicals and chemicals that make water non-palatable
 - Microbiological: pathogens
 - Radiological: ex) uranium

Indicator for pathogens

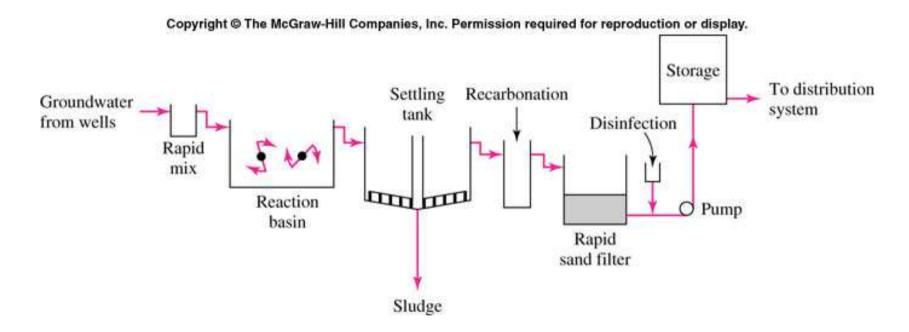
- Indicator is needed for pathogens because it is not practical to analyze all different species
- Total coliforms
 - Most frequently used indicator for pathogens
 - Reasons for using total coliforms as an indicator:
 - Inhabit the intestinal tracks of humans and other mammals
 - Exist in large numbers in individuals
 - Survive in natural waters for relatively long without growth
 - Relatively easy to analyze

Sources of drinking water

- Surface water
 - Variable composition
 - Low mineral content
 - Low hardness
 - High turbidity
 - Colored
 - DO present



- Groundwater
 - Constant composition
 - High mineral content
 - High hardness
 - High Fe, Mn
 - Low turbidity
 - Low color
 - Low DO


Water treatment systems

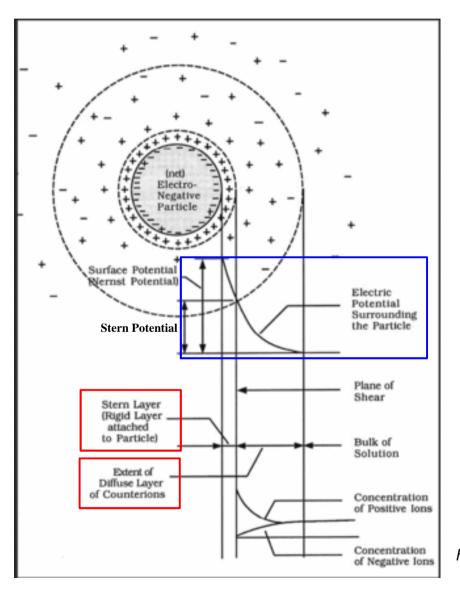
 Coagulation plant: conventional surface water treatment

Water treatment systems

 Water softening plant: for groundwater with high hardness

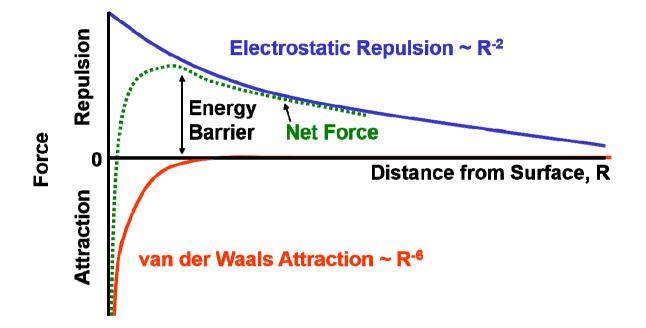
Particle removal in water

- In surface water treatment, remove particles first
- Concerns


Particles..

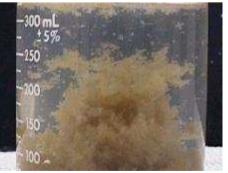
- Cause turbidity and color in water
- Clog filters, foul membranes, reduce disinfection efficiency
- And some particles...
- Are pathogenic (viruses, bacteria, cysts, ...)
- Harbor pathogens
- Have toxic substances
- Are involved in disinfection byproduct formation

Colloids


- Small particles (0.001 to $1 \mu m$)
- Usually negatively charged
- Stability of colloidal suspension
 - "Stable" colloidal suspension: particles are like-charged →
 → particles repel each other → particles do not stick
 together or settle down easily
 - Destabilization of colloidal suspension: neutralizing the particle charge so that the particles can stick together and settle down

Colloids – electrical double layer

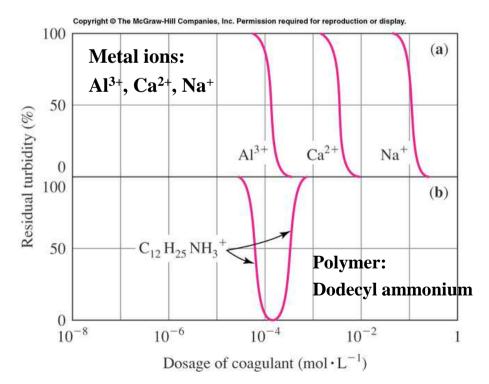
- Ion distribution near the charged colloid is different from the bulk liquid
- Stern layer: rigid layer, ions attached to particle
- Diffuse layer: ions are mobile


Colloids – electrical double layer

- Need "jumping" the energy barrier for particle adhesion
- Ways to reduce the energy barrier
 - Reduce the surface charge of the particle
 - Increase the ionic strength of the solution (compresses the electrical double layer)

Coagulation-flocculation

- Coagulation-flocculation process is used to remove colloidal particles from water
 - Coagulation: a <u>chemical</u> process; change the particle surface properties so that particles can stick together when they collide
 - Flocculation: a <u>physical</u> process; create conditions that allows particles to grow in size
- Result: formation of a "floc" (larger, settleable particles)

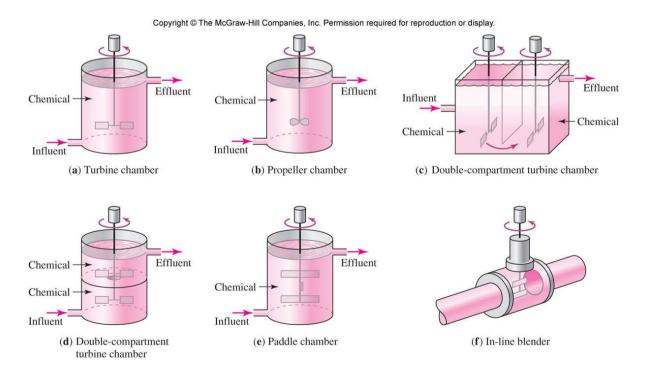

http://www.wrights-trainingsite.com/ WT%20coagfloconb.html

Mechanisms of Coagulation-flocculation

- Charge neutralization
- Compression of the electric double layer
- Inter-particle bridging
- Enmeshment in a precipitate

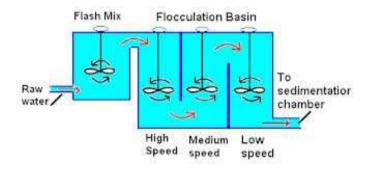
Coagulation

- Goal: To alter the surface charge of the particles so that the particles can stick together to form an initial "floc"
- Coagulants: chemicals added to water for coagulation
- Metal salts or polymeric materials are used as coagulants

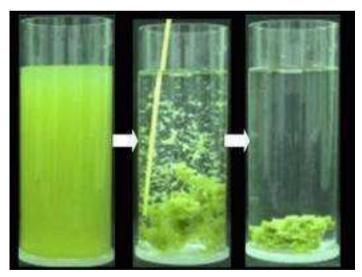

- Among metal ions, trivalent ions are most effective
- For some coagulants, charge reversal may occur if overdosed (-) → (+)

Coagulants

- Key properties
 - Trivalent cation (if a metal salt is to be used)
 - Nontoxic
 - Insoluble in neutral pH
- Commonly used coagulants
 - AI^{3+} or Fe^{3+} salts
 - Alum $(Al_2(SO_4)_3 \cdot 14H_2O)$: most common
 - Alum dissolution: $Al_2(SO_4)_3 \cdot 14H_2O \leftrightarrow 2Al^{3+} + 3SO_4^{2-} + 14H_2O$
 - Ferric (Fe³⁺) cations: $Fe_2(SO_4)_3 \cdot 7H_2O$, $FeCl_3 \cdot 7H_2O$


Rapid mix

- To blend chemicals (ex: coagulants, softening agents) with water
- Short retention time (10-30 s)



Flocculation

- Goal: allow particles to grow by gentle mixing so that they can easily settle
- Usually configured as a three step process
- Too little mixing → not enough energy for particles to stick together
- Too much mixing → particles break down

http://chemistry.tutorvista.com

http://www.tech-faq.com

Reading assignment

Textbook Ch 10 p. 453-470