Phase equilibrium

Chemical equilibria – pure phase & water

• Linear phase partitioning – pure phase i & water

$$Y_i \Leftrightarrow Y_{aq,sat}$$
 $K = \frac{\{Y\}_{aq,sat}}{\{Y\}_i}$

- { }: activity, a unitless thermodynamic property
- For pure phase Y_i , activity is defined as

$${Y}_{i} = 1$$
 (liquid, solid)
 ${Y}_{i} = p_{i}$ (gas); p – pressure (in atm)

- For a dilute aqueous solution $\{Y\}_i \approx [Y]_i$; [] = molar concentration

What is a "dilute aqueous solution"?

Rule of thumb: Solution can be considered dilute if water molecules make up 99.9% or more of the

solution entities

- So:
$$K \approx \frac{[Y]_{aq,sat}}{p_i} \quad \text{or} \quad [Y]_{aq,sat}$$

$$\underset{phase)}{\text{(gas as pure }} \quad \text{(liquid or solid as pure phase)}$$

What's ideal behavior?

 An individual molecule's properties (energy distribution, tendency to react, dissolve, vaporize, etc.) are <u>independent</u> of the presence and/or concentration of <u>any</u> other molecules in the phase

Gas phase

$$Energy = PV = n_t RT = RT \sum_i n_i$$
 $p_i = \frac{n_i RT}{V}$; $P = \sum_i p_i$

- Dilute solution approximation: dissolved component "i" behaves (quasi-) ideally
 - 1st unit of "i" added has the same effect as nth unit
 - Effect of adding a unit of "i" may not be the same as adding a unit of "i"

Air/water partitioning: Henry's constant

Air/water partitioning: Henry's constant

$$H_{-} = \frac{(_)_{air}}{(_)_{aqueous}}$$

$H_{-} = \frac{(_)_{air}}{(_)_{aqueous}}$ • Constant has been defined using a variety of unit combinations

- Mole fraction, atmosphere, molar concentration, mg/L, ...
- H's numerical value depends on units
- Watch out for "1/H"

Linear partitioning because:

- properties (dilute solution, $x_i < ^{\sim}10^{-3}$)
- $H_{xy} = \frac{x_g}{x_{aq}} = \frac{mole\ fraction_g}{mole\ fraction_{aq}}$ Gas phase behaves ideally Dissolution of *i* in water does not affect water's
- $H_{cc} = \frac{moles/vol_g}{moles/vol_{gg}} = \frac{p_i}{[C_i]_{gg} \times RT}$

$$H_{pc} = \frac{p_i}{[C_i]_{aq}}, \quad \frac{l - atm}{mole}$$

Henry's constants: the different forms

At 1 atm, 25°C,

$$H_{xy} = \frac{x_g}{x_{aq}} = \frac{55.3p_i}{C_{i,aq}}$$

 p_i = mole fraction in gas phase gas phase behaves ideally $p_{\tau} = 1$ atm pure water [] is ~55.3 mole/L @ 25°C assume $C_{i,aa} \ll 55.3$ mole/L

$$H_{cc} = \frac{moles/vol_g}{moles/vol_{aq}} = \frac{p_i}{[C_i]_{aq} \times RT} = \frac{p_i}{[C_i]_{aq} \times 24.47}$$
 @ T = 298K & p_T = 1 atm 1 mole of gas occupies 24.47 L

$$H_{pc} = \frac{p_i}{[C_i]_{aq}}, \quad \frac{l - atm}{mole}$$

$$H_{pc} = 0.01807 \times H_{xy} = 24.47 \times H_{cc} @ 25 \%$$

Aqueous solubility and vapor pressure

Properties of some organic chemicals of environmental interest						
Name	Formula	Mol. Wt.	Melt, C	Boil, C	$-\log(p^{sat})^1$	$-\log(\mathbf{C}^{\mathrm{sat}})^2$
methane®	CH ₄	16.0	-182.5	-164.0	-2.44	2.82
n-butane®	C_4H_{10}	58.1	-138.4	-0.4	-0.39	2.98
n-hexane	C_6H_{14}	86.2	-95.0	69.0	0.69	3.83
cyclohexane	C ₆ H ₁₂	84.2	6.6	80.7	0.90	3.15
1-hexene	C_6H_{12}	84.2	-139.8	63.4	0.60	3.15
benzene	C ₆ H ₆	78.1	5.5	80.1	0.90	1.64
1-hexanol	$C_6H_{14}O$	102.2	-46.7	158.0	2.85	0.88
1-octanol	$C_8H_{18}O$	130.2	-16.7	194.4		2.35
toluene	C_7H_8	92.1	-95.0	110.6	1.42	2.25
chlorobenzene	C ₆ H ₅ Cl	112.6	-45.6	132.0	1.80	2.35
1,4dichlorobenzene	$C_6H_4Cl_2$	147.0	53.1	174.0	3.04	3.39
bromobenzene	C ₆ H ₅ Br	157.0	-30.8	156.0	2.25	2.64
dioxin#	$C_{12}H_4O_2Cl_4$	322.0	305	421	11.6	10.3
[®] gas at 25Cp ^{sat} ref	ers to pressure	needed to obt	ain pure liqui	id at 25C		
*2,3,7,8-tetra-chlorodibenzo-p-dioxin						
vapor pressure @ 25C, atmospheres						
² concentration in sa	turated aqueou	is solution, mo	oles/1, 25C			

Mass partitioning between air & water

Henry's constant

Phase volumes

Masses (Moles)

$$H_{cc} = \frac{p_i}{C_{i,aq} \times RT} = \frac{C_{i,g}}{C_{i,aq}}$$

$$V_g$$
, V_{aq}

$$M_{tot}$$
, M_g , M_{aq}

$$R_{g/aq} = \frac{M_g}{M_{aq}} = \frac{H_{cc} \times V_g}{V_{aq}}$$

$$M_g = M_{tot} \times \frac{R_{g/aq}}{1 + R_{g/aq}} = M_{tot} \times \frac{H_{cc} \times V_g}{V_{aq} + H_{cc} \times V_g}$$

$$M_{aq} = M_{tot} \times \frac{1}{1 + R_{g/aq}} = M_{tot} \times \frac{V_{aq}}{V_{aq} + H_{cc} \times V_g}$$

Mass partitioning between air & water

Q: A 1.000 L bottle is filled with 500.0 mL water. Then, 42.1 mg 1-hexene (MW: 84.2) is added. After sealing the bottle, it is left at 25°C until equilibrium between air and water. How will the 1-hexene mass partition between air and water in the bottle?

Octanol water partition coefficient

n-octanol, C₈H₁₇OH

- Surrogate for natural organic phases
 - Humics, DOC, lipids
- Slightly soluble in water, $x_{i,sat} \sim 10^{-4}$
- MW = 130.2; ρ = 0.826

$$K_{ow} = \frac{C_i^{oct}}{C_i^{aq}} = 0.114 \frac{x_i^{oct}}{x_i^{aq}}$$

 x_i : mole fraction

 C_i : molar concentration

Aq. solubility, vapor pressure, K_{ow}

Compound	Formula	log K _{ow}	$-\log(p^{sat})^1$	$-\log(C^{sat})^2$
methane	CH_4	1.09	-2.44	2.82
n-butane [@]	C_4H_{10}	2.89	-0.39	2.98
n-hexane	C_6H_{14}	4.00	0.69	3.83
cyclohexane	C_6H_{12}	3.44	0.90	3.15
1-hexene	C_6H_{12}	3.40	0.60	3.15
benzene	C_6H_6	2.17	0.90	1.64
1-hexanol	$C_6H_{14}O$	2.03	2.85	0.88
1-octanol	$C_8H_{18}O$	2.84		2.35
toluene	C_7H_8	2.69	1.42	2.25
chlorobenzene	C ₆ H ₅ Cl	2.78	1.80	2.35
1,4 dichlorobenzene	$C_6H_4Cl_2$	3.45	3.04	3.39
bromobenzene	C ₆ H ₅ Br	2.99	2.25	2.64
dioxin#	C ₁₂ H ₄ O ₂ Cl ₄	6.64	11.6	10.3

[@]gas at 25C--psat refers to pressure needed to obtain pure liquid at 25C

^{#2,3,7,8-}tetra-chlorodibenzo-p-dioxin

¹vapor pressure @ 25C, atmospheres

²concentration in saturated aqueous solution, moles/1, 25C

Using K_{ow}

Partitioning to biota

- Octanol a surrogate for lipids, fats, etc.
 - Humans 10-30% lipids by weight, α
- Bioconcentration factor (BCF) = C_{biota}/C_{aq}
 - C_{biota}: moles/kg (wet weight)
 - BCF not necessarily representative of equilibrium state
- As a rough estimate, assume:

$$K_{biota,aq} = \frac{\alpha}{0.826} K_{ow}$$

Contaminants in organisms - terms

Bioaccumulation

Net contaminant accumulation (all sources) in & on an organism

Bioconcentration

Net contaminant accumulation (from water) in & on an organism

Biomagnification

Contaminant conc. increase from trophic level "n" to "n+1"

Bioaccumulation factor (BAF)

Bioconcentration factor (BCF)

Biomagnification factor

Transport against hydraulic gradient

Salmons concentrate PCBs (biovectors)

Bioconcentration of PCBs in Lake Ontario

	microgram PCB per *			
PCB congener	52	66	153	
MW	291.97	291.97	360.71	
dissolved	6.3E-0.5	3.1E-0.5	5.0E-0.5	
bottom sediment	25	46	25	
suspended sediment	15	27	23	
plankton	2.4	1.6	2.2	
mysids	3.5	15	30	
amphipods	22	30	45	
oligochaetes	6.3	8.3	7.5	
small smelt	7.6	2.7	64	
large smelt	18	72	130	
trout/salmon	62	160	430	

PCB molecular structure

*liter for dissolved; kg dry wt. for sediments; kg wet wt. for organisms

Oliver & Nilmi, 1988, ES&T, 22:388-397

Hydrophobic contaminants in organisms

Tend to partition to lipids

- Lipids are fat soluble, naturally occurring molecules
 - Fats, oils, waxes, some vitamins (A, D, E, K), glycerides
 - Have hydrocarbon chains hydrophobic

Assume lipids are equivalent to octanol

- $K_{lipid/water} = K_{ow}$
- 1 kg lipid = 1 kg octanol
- 1 liter lipid = 1 liter octanol

Uptake/depuration by organisms is a complex combination of processes

- Biota may not be in equilibrium with surroundings
- Depuration: "cleansing"; transfer of contaminant from organism to surroundings

Using K_{ow}

Partitioning to soils, sediments

- Octanol as a surrogate for natural organic matter (NOM)
- Neutral, hydrophobic contaminants partition much more strongly to the NOM fraction of soil than to mineral phases
 - Hydrophobic regions of NOM
 - Only mineral surfaces are accessible to contaminants
 - NOM typically dominates partitioning down to $f_{oc} \approx 0.5 f_{nom} \approx 0.001$

Water/sediment partitioning, K_d

$$K_d = f_{oc}K_{oc} = \frac{C_i^{solid}}{C_i^{aq}}$$
 $\frac{g \, sorbed/g \, dry \, solid}{g \, aqueous/m^3 \, water} = \frac{m^3 \, water}{g \, dry \, solid}$

- K_{oc} & K_d have strange units, vol_{aq}/mass_{solid}
 - Mass dry solid because:
 - Different soils/sediments have differing densities
 - Sorption experiments use weighed amount of solids
- Researchers have expressed K_d as:
 - m 3 /g, mL/mg, L/g, L/kg, L/mg
 - Numerical value of K_d will depend on the units used
- For contaminants, any mass, # units can be used as long as the same units are used for both phases

Water/sediment partitioning, K_d

$$K_{oc} = \beta \times K_{ow}^{\alpha}$$

Ref.	# of	Range of	βx10 ⁶	α	r
	compounds	$\log K_{ow}$			
A Karickhoff, 1983	10	2.1~6.6	0.63	1.0	1.0
B Kenaga & Goring, 1980	45	-1.7~6.6	24	0.54	0.93
C Rao & Davidson, 1980	15	-0.5~5.6	0.66	1.03	0.95
D Karickhoff, 1981	6	1.0~6.5	0.45	0.99	0.99
E Schwarzenbach & Westall, 1981	12	2.6~4.7	3.1	0.72	0.97
F Chio et al., 1983	12	2.1~5.6	0.3	0.90	0.99
G Mingelgrin & Gerstl, 1983	7	3.1~6.2	1.1	0.87	0.85
H Curtis et al., 1986	22	1.4~6.6	0.59	0.92	0.94

 $(K_{oc} in [m^3/g])$

• Use "A" (Karickhoff, 1983) for this class

Water/sediment partitioning, K_d

Phase equilibrium - fugacity

At equilibrium

$$\mu_i^{pure} = \mu_i^{gas} = \mu_i^{s} = \mu_i^{aq}$$
(If pure phase exists)

$$\mu_i^{eq} = \mu_i^{gas} = \mu_i^{s} = \mu_i^{aq}$$
(If pure phase does not exists)

- μ is the chemical potential; it has units of energy – difficult to measure
- Chemical potential is related to activity

$$\{i\}_{g,s,aq} \sim e^{\mu}$$

 For gas phase, activity equals partial pressure, expressed in atm

Phase equilibrium - fugacity

Define the **fugacity** of a species in any phase to be equal to the **partial pressure of the species** in a gas that is in equilibrium with the phase

$$f_i^{gas} = f_i^{s} = f_i^{aq} = p_i$$
 (= f_i^{pure}), if pure phase exists

Why use p_i?

- Pressure is comprehensible & measurable
- Gas phase behaves ideally a good reference
 - $p_i \propto \{i\} \propto [i]$

Phase equilibrium - fugacity

- Advantage of fugacity approach
 - Predict multi-phase equilibrium partitioning in a minimally complex fashion
- Fugacity approach is applicable
 - For volatile compounds
 - In dilute systems when partitioning is linear among different phases

Equilibrium partitioning between phases

- Linear partitioning among phases: review our discussions
 - Henry's law for gas/water partitioning (linear partitioning):

$$p_i = H_{pc} \times C_i^{aq}$$
 or $C_i^{gas} = H_{cc} \times C_i^{aq}$

Linear partitioning among water and any other phases:

$$C_i^s = K_d \times C_i^{aq}$$
 $C_i^{biota} = BCF \times C_i^{aq}$
 $C_i^{oct} = K_{ow} \times C_i^{aq}$
:

In general,

$$C_i^j = K^{jk} \times C_i^k$$
, $C_i^k = K^{kj} \times C_i^j = (1/K^{kj}) \times C_i^j$
 $C_i^j = K^{jk} \times K^{kl} \times C_i^l = K^{jl} \times C_i^l$

Applying fugacity approach

- **So:** if a system is <u>at equilibrium</u> and <u>partitioning is linear</u>, we can relate the concentration of a compound in any phase to partial pressure, or *fugacity*
- **Now:** introduce "Z value", the fugacity capacity factor (unit: mole/atm/m³), to relate fugacity to concentration.

Then:

$$C_{i}^{j} = f_{i}Z_{i}^{j}$$

$$Moles_{i}^{j} = C_{i}^{j}V^{j} = f_{i}Z_{i}^{j}V^{j}$$

$$\sum_{i} Moles_{i}^{j} = \sum_{i} C_{i}^{j}V^{j} = f_{i}\sum_{i} Z_{i}^{j}V^{j} \qquad \text{(when } C_{i}^{j} \text{ are all expressed as moles/volume)}$$

Z values for different phases

Gas phase

$$p_i V^{gas} = nRT$$

$$\frac{n_i}{V^{gas}} = C_i^{gas} = \frac{p_i}{RT} = \frac{f_i}{RT} \qquad \Rightarrow \qquad Z_i^{gas} = \frac{1}{RT}$$

$$Z_i^{gas} = \frac{1}{RT}$$

Aqueous phase

$$p_i = f_i = H_{pc}C_i^{aq}$$

$$C_i^{aq} = \frac{f_i}{H_{pc}}$$

Octanol

$$C_i^{oct} = K_{ow}C_i^{aq} = f_i \times \frac{K_{ow}}{H_{pc}}$$
 \Rightarrow $Z_i^{oct} = \frac{K_{ow}}{H_{pc}}$

$$Z_i^{oct} = \frac{K_{ow}}{H_{nc}}$$

Z values for different phases

Solid phase

$$C_i^{s*} = K_d C_i^{aq}$$

 $C_i^{s*} = K_d C_i^{aq}$ Here, C_i^{s*} is per weight basis; K_d has a dimension of (vol. water) / (weight solid)

$$C_i^{\ S} = \rho_S K_d C_i^{aq} = f_i \times \frac{\rho_S K_d}{H_{pc}}$$
 \Rightarrow $Z_i^{\ S} = \frac{\rho_S K_d}{H_{pc}}$ $C_i^{\ S}$ is per volume basis

$$Z_i^s = \frac{\rho_s K_d}{H_{pc}}$$

- or, we may use:

$$Z_i^{s*} = \frac{C_i^{s*}}{f_i} = \frac{K_d C_i^{aq}}{f_i} = \frac{K_d}{H_{pc}}$$
 Z_i^{s*} has a unit of moles/atm/kg

- then,

$$Moles_i^s = C_i^{s*}M^s = f_iZ_i^{s*}M^s$$

Applying fugacity approach

- Our potential interest: how mass will be distributed among phases.
- Need:
 - Compartment volumes or masses
 - Equilibrium constants (Henry's constant, K_{ow}, K_{oc}, etc.)

$$M_i^{total} = \sum_j C_i^{\ j} V^j = f_i \sum_j Z_i^{\ j} V^j = p_i \sum_j Z_i^{\ j} V^j$$

If Z_i^{j*} is obtained for any solid phase, substitute $Z_i^{j}V^j$ with $Z_i^{j*}M^j$ for that phase

- If we know M_i^{total} , we can calculate f_i and then determine $C_i^{\ j}$ s and distributions among compartments
- If we know f_i , we can calculate M_i^{total} and then determine C_i^j s and distributions among compartments

Determine equilibrium partitioning

1.000 liter bottles 25C 42.1 mg 1-hexene

