
U Kang

Reinforcement Learning

Deep Deterministic Policy Gradient

U Kang
Seoul National University

U Kang

In This Lecture

 Deterministic Policy Gradient
 Deep Deterministic Policy Gradient

U Kang

Outline

Deterministic Policy Gradient
Deep Q-Network
Deep Deterministic Policy Gradient
Conclusion

U Kang

Policy Approximation and its
Advantages

 In policy gradient (PG) methods, the policy can be parameterized in any
way, as long as 𝜋 𝑎 𝑠, 𝜃 is differentiable with respect to its parameters
𝜃; i.e., 𝛻𝜃𝜋 𝑎 𝑠, 𝜃 exists and is finite

U Kang

Policy Approximation and its
Advantages

 If the action space is discrete and not too large, then a natural and
common kind of parameterization is to form parameterized numerical
preferences ℎ(𝑠, 𝑎, 𝜃) ∈ 𝑅 for each state–action pair

 The actions with the highest preferences in each state are given the
highest probabilities of being selected, for example, according to an
exponential soft-max distribution:

 The action preferences ℎ(𝑠, 𝑎, 𝜃) can be parameterized arbitrarily
 E.g., ANN (as in AlphaGo)
 E.g., linear: ℎ 𝑠, 𝑎, 𝜃 = 𝜃𝑇𝑥(𝑠, 𝑎), where 𝑥(𝑠, 𝑎) ∈ 𝑅𝑑′ is a feature vector

𝜋 𝑎 𝑠, 𝜃 ሶ=
𝑒ℎ 𝑠,𝑎,𝜃

σ𝑏 𝑒
ℎ 𝑠,𝑏,𝜃

U Kang

Stochastic Policy Gradient

 Performance objective

r(s,a): return

U Kang

Stochastic Policy Gradient

 Stochastic policy gradient theorem

U Kang

Deterministic Policy Gradient

 Goal: learn deterministic policy
 𝑎 = 𝜇𝜃(𝑠)

 Advantage of deterministic policy
 In the stochastic case, the policy gradient integrates

over both state and action spaces, whereas in the
deterministic case it only integrates over the state space.
As a result, computing the stochastic policy gradient
may require more samples, especially if the action space
has many dimensions

U Kang

Deterministic Policy Gradient

 Performance objective

𝜌𝜇(𝑠): state distribution

𝜇𝜃(𝑠): deterministic policy (S -> A)

𝑟(𝑠, 𝑎): return

U Kang

Deterministic Policy Gradient

 Deterministic policy gradient theorem

n: # of policy parameters (=|𝜃|)
m: # of actions

𝜇𝜃(𝑠): function from state -> 𝑅𝑚

𝑄𝜇(𝑠, 𝑎): function from state, action -> 𝑅
𝛻𝜃𝜇𝜃(𝑠): matrix of size 𝑅𝑛×𝑚

𝛻𝑎𝑄
𝜇(𝑠, 𝑎): vector of size 𝑅𝑚

U Kang

Outline

Deterministic Policy Gradient
Deep Q-Network
Deep Deterministic Policy Gradient
Conclusion

U Kang

Human-level Video Game Play

 The basic architecture of DQN is similar to the deep convolutional ANN
 DQN has three hidden convolutional layers, followed by one fully

connected hidden layer, followed by the output layer
 The three successive hidden convolutional layers of DQN produce 32 20

x 20 feature maps, 64 9 x 9 feature maps, and 64 7 x 7 feature maps
 The activation function of the units of each feature map is a rectifier

nonlinearity (max(0, x))
 The 3,136 (64 x 7 x 7) units in this third convolutional layer all connect

to each of 512 units in the fully connected hidden layer, which then
each connect to all 18 units in the output layer, one for each possible
action in an Atari game

U Kang

Human-level Video Game Play

https://www.nature.com/articles/nature14236

U Kang

Human-level Video Game Play

 The activation levels of DQN’s output units were the estimated optimal
action values of the corresponding state–action pairs, for the state
represented by the network’s input

 The assignment of output units to a game’s actions varied from game
to game, and because the number of valid actions varied between 4
and 18 for the games, not all output units had functional roles in all of
the games

 It helps to think of the network as if it were 18 separate networks, one
for estimating the optimal action value of each possible action

 In reality, these networks shared their initial layers, but the output
units learned to use the features extracted by these layers in different
ways

U Kang

Human-level Video Game Play

 DQN’s reward signal indicated how a game’s score changed from one
time step to the next: +1 whenever it increased, −1 whenever it
decreased, and 0 otherwise

 This standardized the reward signal across the games and made a
single step-size parameter work well for all the games

 DQN used an 𝜖-greedy policy, with 𝜖 decreasing linearly over the first
million frames and remaining at a low value for the rest of the learning
session

U Kang

Q-learning: Off-policy TD Control

Sutton and Barto,

Reinforcement

Learning, 2018

U Kang

Human-level Video Game Play

 After DQN selected an action, the action was executed by the game
emulator, which returned a reward and the next video frame

 The frame was preprocessed and added to the four-frame stack that
became the next input to the network

 DQN used the semi-gradient form of Q-learning to update the weights:

 The gradient was computed by backpropagation
 Mnih et al. used a mini-batch method that updated weights only after

accumulating gradient information over a small batch of images (here
after 32 images)

 This yielded smoother sample gradients compared to the usual
procedure that updates weights after each action

𝑤𝑡+1 = 𝑤𝑡 + 𝛼 𝑅𝑡+1 + 𝛾max
𝑎

ො𝑞 𝑆𝑡+1, 𝑎, 𝑤𝑡 − ො𝑞 𝑆𝑡 , 𝐴𝑡, 𝑤𝑡 𝛻ොq(𝑆𝑡 , 𝐴𝑡, 𝑤𝑡)

U Kang

Human-level Video Game Play

https://arxiv.org/pdf/1312.5602.pdf

U Kang

Human-level Video Game Play

 Mnih et al. modified the basic Q-learning procedure in three ways
 1) Experience replay

 Store the agent’s experience at each time step in a replay memory that is
accessed to perform the weight updates

 After the game emulator executed action 𝐴𝑡 in a state represented by the
image stack 𝑆𝑡, and returned reward 𝑅𝑡+1 and image stack 𝑆𝑡+1, it added
the tuple (𝑆𝑡, 𝐴𝑡, 𝑅𝑡+1, 𝑆𝑡+1) to the replay memory

 This memory accumulated experiences over many plays of the same game
 At each time step multiple Q-learning updates (a mini-batch) were

performed based on experiences sampled uniformly at random from the
replay memory

U Kang

Human-level Video Game Play

 1) Experience replay
 Q-learning with experience replay provided several advantages over the

usual form of Q-learning
 The ability to use each stored experience for many updates allowed DQN to

learn more efficiently from its experiences
 Experience replay reduced the variance of the updates because successive

updates were not correlated with one another as they would be with
standard Q-learning

U Kang

Human-level Video Game Play

 2) Fixed target (for stable learning)
 As in other methods that bootstrap, the target for a Q-learning update

depends on the current action-value function estimate
 Its dependence on 𝑤𝑡 complicates the process compared to the simpler

supervised-learning situation in which the targets do not depend on the
parameters being updated

 Solution: whenever a certain number, C, of updates had been done to the
weights w of the action-value network, they inserted the network’s current
weights into another network and held these duplicate weights fixed for the
next C updates of w

 The outputs of this duplicate network over the next C updates of w were
used as the Q-learning targets

 Letting 𝑞 denote the output of this duplicate network, the update rule was:

𝑤𝑡+1 = 𝑤𝑡 + 𝛼 𝑅𝑡+1 + 𝛾max
𝑎

𝑞 𝑆𝑡+1, 𝑎, 𝑤𝑡 − ො𝑞 𝑆𝑡 , 𝐴𝑡, 𝑤𝑡 𝛻ොq(𝑆𝑡 , 𝐴𝑡, 𝑤𝑡)

U Kang

Human-level Video Game Play

 3) Error clipping
 Goal: to improve stability
 Clipped the error term

 so that it remained in the interval [−1, 1]
 Reminder: the parameter is updated by

𝑤𝑡+1 = 𝑤𝑡 + 𝛼 𝑅𝑡+1 + 𝛾max
𝑎

ො𝑞 𝑆𝑡+1, 𝑎, 𝑤𝑡 − ො𝑞 𝑆𝑡 , 𝐴𝑡, 𝑤𝑡 𝛻ොq(𝑆𝑡 , 𝐴𝑡, 𝑤𝑡)

𝑅𝑡+1 + 𝛾max
𝑎

𝑞 𝑆𝑡+1, 𝑎, 𝑤𝑡 − ො𝑞(𝑆𝑡 , 𝐴𝑡, 𝑤𝑡)

U Kang

Outline

Deterministic Policy Gradient
Deep Q-Network
Deep Deterministic Policy Gradient
Conclusion

U Kang

Deep Deterministic Policy
Gradient

 DDPG
 Combines DPG and DQN
 DDPG is based on DPG, thus, it uses the deterministic

policy gradient to update the policy parameter
 In addition, DDPG updates the action-value function

Q(s,a) with DQN
 Since DDPG updates both policy and value functions, it is

an actor-critic method

U Kang

Deep Deterministic Policy
Gradient

 Actor
 Updates the policy using the deterministic policy

gradient

 Instead of the expectation, DDPG uses samples from the
replay memory (as in DQN)

U Kang

Deep Deterministic Policy
Gradient

 Critic
 Updates the value function as in DQN
 However, unlike DQN, the update target slowly tracks

the learned networks

U Kang

Deep Deterministic Policy
Gradient

U Kang

Outline

Deterministic Policy Gradient
Deep Q-Network
Deep Deterministic Policy Gradient
Conclusion

U Kang

Conclusion

 Deterministic policy gradient is useful for high-
dimensional action space

 Deep deterministic policy gradient combines DPG
with DQN, and enables rich neural networks to
learn value and policy functions

U Kang

Questions?

