

Introduction to Data Mining

Lecture #15: Clustering-2

U Kang Seoul National University

U Kang

In This Lecture

- Learn the motivation and advantage of BFR, an extension of K-means to very large data
- Learn the motivation and advantage of CURE, an extension of K-means to clusters of arbitrary shapes

BFR Algorithm CURE Algorithm

BFR: Extension of k-means to large data

BFR Algorithm

- BFR [Bradley-Fayyad-Reina] is a variant of k-means designed to handle very large (disk-resident) data sets
- Assumes that clusters are normally distributed around a centroid in a Euclidean space
 - Standard deviations in different dimensions may vary
 - Clusters are axis-aligned ellipses
- Efficient way to summarize clusters
 (want memory required O(clusters) and not O(data))

BFR Algorithm

- Points are read from disk one main-memory-full at a time
- Most points from previous memory loads are summarized by simple statistics
- To begin, from the initial load we select the initial
 k centroids by some sensible approach:
 - Take k random points
 - Take a small random sample and cluster optimally
 - Take a sample; pick a random point, and then
 k-1 more points, each as far from the previously selected points as possible

Three Classes of Points

3 sets of points which we keep track of:

Discard set (DS):

Points close enough to a centroid to be summarized

Compression set (CS):

- Groups of points that are close together but not close to any existing centroid
- These points are summarized, but not assigned to a cluster

Retained set (RS):

Isolated points waiting to be assigned to a compression set

BFR: "Galaxies" Picture

Discard set (DS): Close enough to a centroid to be summarized **Compression set (CS):** Summarized, but not assigned to a cluster Retained set (RS): Isolated points

Summarizing Sets of Points

For each cluster, the discard set (DS) is <u>summarized</u> by:

- The number of points, N
- The vector SUM, whose ith component is the sum of the coordinates of the points in the ith dimension
- The vector SUMSQ: ith component = sum of squares of coordinates in ith dimension

Summarizing Points: Comments

- 2d + 1 values represent any size cluster
 - **d** = number of dimensions
- Average in each dimension (the centroid) can be calculated as SUM_i / N
 - SUM_i = ith component of SUM
- Variance of a cluster's discard set in dimension i
 is: (SUMSQ_i / N) (SUM_i / N)²
 - And standard deviation is the square root of that

Next step: Actual clustering

Note: Removing the "axis-aligned" clusters assumption would require storing full covariance matrix to summarize the cluster. So, instead of **SUMSQ** being a *d*-dim vector, it would be a *d x d* matrix, which is too big! U Kang

The "Memory-Load" of Points

Processing the "Memory-Load" of points (1):

- 1) Find those points that are "sufficiently close" to a cluster centroid and add those points to that cluster and the DS
 - These points are so close to the centroid that they can be summarized and then discarded
- 2) Use any main-memory clustering algorithm to cluster the remaining points and the old RS
 - Clusters go to the CS; outlying points to the RS Discard set (DS): Close enough to a centroid to be summarized. Compression set (CS): Summarized, but not assigned to a cluster Retained set (RS): Isolated points UKang

The "Memory-Load" of Points

Processing the "Memory-Load" of points (2):

- 3) DS set: Adjust statistics of the clusters to account for the new points
 - Update Ns, SUMs, SUMSQs
- 4) Consider merging compressed sets in the CS
- 5) If this is the last round, merge all compressed sets in the CS and all RS points into their nearest cluster

Discard set (DS): Close enough to a centroid to be summarized. Compression set (CS): Summarized, but not assigned to a cluster Retained set (RS): Isolated points **U** Kang

A Few Details...

- Q1) How do we decide if a point is "close enough" to a cluster that we will add the point to that cluster?
- Q2) How do we decide whether two compressed sets (CS) deserve to be combined into one?

How Close is Close Enough?

 Q1) We need a way to decide whether to put a new point into a cluster (and discard)

BFR suggests two ways:

 High likelihood of the point belonging to currently nearest centroid (and, the point far from all other centroids)

U Kang

The Mahalanobis distance is small (< t)</p>

Mahalanobis Distance

Normalized Euclidean distance from centroid

For point $(x_1, ..., x_d)$ and centroid $(c_1, ..., c_d)$

- 1. Normalize in each dimension: $y_i = (x_i c_i) / \sigma_i$
- 2. Take sum of the squares of the y_i
- 3. Take the square root

$$d(x,c) = \sqrt{\sum_{i=1}^{d} \left(\frac{x_i - c_i}{\sigma_i}\right)^2}$$

 σ_i ... standard deviation of points in the cluster in the *i*th dimension

Mahalanobis Distance

If clusters are normally distributed in **d** dimensions, then after transformation, one standard deviation = \sqrt{d}

 Accept a point for a cluster if its M.D. is < t (a parameter), e.g. 2 standard deviations

Picture: Equal M.D. Regions

Euclidean vs. Mahalanobis distance

Should 2 CS clusters be combined?

Q2) Should 2 CS subclusters be combined?

- Compute the variance of the combined subcluster
 - N, SUM, and SUMSQ allow us to make that calculation quickly
- Combine if the combined variance is small (< s)

BFR Algorithm CURE Algorithm

CURE: Extension of k-means to clusters of arbitrary shapes

The CURE Algorithm

Problem with BFR/k-means:

- Assumes clusters are normally distributed in each dimension
- And axes are fixed ellipses at an angle are *not OK*

CURE (Clustering Using REpresentatives):

- Assumes a Euclidean distance
- Allows clusters to assume any shape
- Uses a collection of representative points to represent clusters

Starting CURE

2 Pass algorithm. Pass 1:

- 1) Pick a random sample of points that fit in main memory
- 2) Initial clusters:
 - Cluster these points hierarchically group nearest points/clusters

3) Pick representative points:

- For each cluster, pick a sample of points, as dispersed as possible
- From the sample, pick representatives by moving them (say) 20% toward the centroid of the cluster

Starting CURE

2 Pass algorithm. Pass 1:

4) Merge clusters

- Merge two clusters that are sufficiently close (<t)
 - Cluster distance: minimum distance of representative points
- Repeat, until there are no more sufficiently close clusters

Example: Initial Clusters

Finishing CURE

Pass 2:

Now, rescan the whole dataset and visit each point *p* in the data set

Place it in the "closest cluster"

Normal definition of "closest":
 Find the closest representative to *p* and assign it to representative's cluster

р

Summary: Clustering

 Clustering: Given a set of points, with a notion of distance between points, group the points into some number of clusters

Algorithms:

- Agglomerative hierarchical clustering:
 - Centroid and clustroid
- □ *k*-means:
 - Initialization, picking k
- **BFR**
- **CURE**

Questions?