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Introduction to Data Mining

Lecture #15: Clustering-2

U Kang
Seoul National University
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In This Lecture

m Learn the motivation and advantage of BFR, an
extension of K-means to very large data

m Learn the motivation and advantage of CURE, an
extension of K-means to clusters of arbitrary shapes
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BFR:
Extension of k-means to large data
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m BFR [Bradley-Fayyad-Reina] is a wE ey e E
variant of k-means designed to
handle very large (disk-resident) data sets

m Assumes that clusters are normally distributed
around a centroid in a Euclidean space

a Standard deviations in different
dimensions may vary
m Clusters are axis-aligned ellipses

m Efficient way to summarize clusters
(want memory required O(clusters) and not O(data))
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BFR Algorithm

m Points are read from disk one main-memory-full
at a time

m Most points from previous memory loads are
summarized by simple statistics

m To begin, from the initial load we select the initial
k centroids by some sensible approach:
0 Take k random points
0 Take a small random sample and cluster optimally

o Take a sample; pick a random point, and then
k-1 more points, each as far from the previously

selected points as possible
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Three Classes of Points

3 sets of points which we keep track of:

m Discard set (DS):
2 Points close enough to a centroid to be summarized

m Compression set (CS):

0 Groups of points that are close together but not close to
any existing centroid

0 These points are summarized, but not assigned to a
cluster

m Retained set (RS):

0 Isolated points waiting to be assigned to a compression

set
U Kang 6
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BFR: “Galaxies” Picture

Points in
< the RS

Compressed sets.
@ \Their points are in \>®

the CS.

A cluster. Its points
are in the DS. The centroid

Discard set (DS): Close enough to a centroid to be summarized
Compression set (CS): Summarized, but not assigned to a cluster

Retained set (RS): Isolated points
U Kang 7
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Summarizing Sets of Points

For each cluster, the discard set (DS) is
summarized by:

m The number of points, N

m The vector SUM, whose i component is the

sum of the coordinates of the points in the ith
dimension

m The vector SUMSQ: it component = sum of
squares of coordinates in it dimension

A cluster. @

All its points are in the DS. The centroid
U Kang 8



8¢ Summarizing Points: Comments

m 2d + 1 values represent any size cluster
o d = number of dimensions
m Average in each dimension (the centroid)
can be calculated as SUM./ N
a0 SUM. = it" component of SUM
m Variance of a cluster’s discard set in dimension i
is: (SUMSQ, / N) — (SUM. / N)?
o And standard deviation is the square root of that

m Next step: Actual clustering

Note: Removing the “axis-aligned” clusters assumption would require

storing full covariance matrix to summarize the cluster. So, instead of

SUMSQ being a d-dim vector, it would be a d x d matrix, which is too big!
U Kang



R The “Memory-LOad" Of Points

Processing the “Memory-Load” of points (1):

m 1) Find those points that are “sufficiently close”
to a cluster centroid and add those points to that
cluster and the DS

0 These points are so close to the centroid that
they can be summarized and then discarded

m 2) Use any main-memory clustering algorithm to
cluster the remaining points and the old RS

o Clusters go to the CS; outlying points to the RS

Discard set (DS): Close enough to a centroid to be summarized.
Compression set (CS): Summarized, but not assigned to a cluster

Retained set (RS): Isolated points
U Kang 10
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" The “Memory-Load"” of Points

Processing the “Memory-Load” of points (2):

m 3) DS set: Adjust statistics of the clusters to account
for the new points

o Update Ns, SUMs, SUMSQs
m 4) Consider merging compressed sets in the CS

m 5) If this is the last round, merge all compressed
sets in the CS and all RS points into their nearest
cluster

Discard set (DS): Close enough to a centroid to be summarized.
Compression set (CS): Summarized, but not assigned to a cluster

Retained set (RS): Isolated points
U Kang 11
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m Q1) How do we decide if a point is “close

enough” to a cluster that we will add the point
to that cluster?

m Q2) How do we decide whether two

compressed sets (CS) deserve to be combined
into one?

U Kang
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== How Close is Close Enough?

m Q1) We need a way to decide whether to put a
new point into a cluster (and discard)

m BFR suggests two ways:

o High likelihood of the point belonging to currently
nearest centroid (and, the point far from all other

centroids)
a The Mahalanobis distance is small (< t)

Gaussian or
"normal"
distribution

fo(X)
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Mahalanobis Distance

m Normalized Euclidean distance from centroid

m For point (x,, ..., x;) and centroid (c,, ..., ¢ )
1. Normalize in each dimension: y; = (x. - ¢)) / o
2. Take sum of the squares of the y;
3. Take the square root

d(x,c) =

d 2
V =1

Xi — Cj
Oj

o; ... Standard deviation of points in
the cluster in the i dimension

U Kang 14




Mahalanobis Distance

m |f clusters are normally distributed in d
dimensions, then after transformation, one

standard deviation = Vd

m Accept a point for a cluster if
its M.D. is < t (a parameter),
e.g. 2 standard deviations

U Kang

Gaussian or
"normal”
distribution
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Picture: Equal M.D. Regions

m Euclidean vs. Mahalanobis distance

Uniformly distributed points, Normally distributed points, = Normally distributed points,

Euclidean distance Euclidean distance Mahalanobis distance
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WY Should 2 CS clusters be combined?

Q2) Should 2 CS subclusters be

combined?
m Compute the variance of the combined @
subcluster
a N, SUM, and SUMSQ allow us to make that @
calculation quickly

m Combine if the combined variance is
small (< s)

U Kang 17
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CURE:
Extension of k-means to clusters
of arbitrary shapes
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Y The CURE Algorithm

m Problem with BFR/k-means:

0 Assumes clusters are normally
distributed in each dimension

o And axes are fixed — ellipses at
an angle are not OK

m CURE (Clustering Using REpresentatives):
o Assumes a Euclidean distance
o Allows clusters to assume any shape

0 Uses a collection of representative
points to represent clusters

U Kang BT



S Starting CURE

2 Pass algorithm. Pass 1:

m 1) Pick a random sample of points that fit in
main memory

m 2) Initial clusters:

0 Cluster these points hierarchically — group
nearest points/clusters

m 3) Pick representative points:

o For each cluster, pick a sample of points, as dispersed
as possible

o From the sample, pick representatives by moving

them (say) 20% toward the centroid of the cluster
U Kang
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G Starting CURE

2 Pass algorithm. Pass 1:

m 4) Merge clusters

o Merge two clusters that are sufficiently close (<t)

m Cluster distance: minimum distance of representative points

0 Repeat, until there are no more sufficiently close
clusters

U Kang
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Pick (say) 4
remote points
for each
cluster.
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Example: Pick Dispersed Points

Move points
(say) 20%
toward the
centroid.
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Finishing CURE

Pass 2:

m Now, rescan the whole dataset and
visit each point p in the data set

m Place it in the “closest cluster”

2 Normal definition of “closest”:

Find the closest representative to p and
assign it to representative’s cluster

U Kang
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Summary: Clustering

m Clustering: Given a set of points, with a notion of
distance between points, group the points into
some number of clusters

m Algorithms:
0 Agglomerative hierarchical clustering:
m Centroid and clustroid
0 k-means:
m [nitialization, picking k
o BFR
o CURE
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Questions?
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