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Motivation

 Typical neural networks implement a deterministic 
transformation of some input variables x

 In developing generative models, we often wish to extend neural 
networks to implement stochastic transformation of x

 One simple way to do this is to augment the neural network with 
extra inputs z that are sampled from simple prob. distribution 
such as uniform or Gaussian

 The function f(x,z) will appear stochastic to an observer who does 
not have access to z

 Provided that f is continuous and differentiable, we can compute 
gradients for training using back-propagation
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Back-Prop Through Sampling

 Consider the operation consisting of drawing samples 
𝑦~𝑁(𝜇, 𝜎2)

 It may seem counterintuitive to differentiate y wrt the parameter 
of its distribution (𝜇 and 𝜎2)

 However, we can use a reparameterization trick, which is to 
rewrite the sampling process as transforming an underlying 
random value 𝑧~𝑁(0,1) to obtain a sample from the desired 
distribution:  𝑦 = 𝜇 + 𝜎𝑧

 Now we can back-propagate through the sampling operation, by 
regarding it as a deterministic operation with an extra input z

 The extra input should be a random variable which is not a 
function of any of the parameter we differentiate against y
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Back-Prop Through Sampling

 The result (e.g., 
𝜕𝑦

𝜕𝜇
or 

𝜕𝑦

𝜕𝜎
) tells us how an infinitesimal change in 𝜇

or 𝜎 would change the output if we could repeat the sampling 
operation again with the same value of z

 Being able to back-propagating through sampling operation 
allows us to incorporate it into a larger graph

 We can build elements of the graph on top of the output of the 
sampling distribution; we also can build elements of the graph 
whose outputs are the inputs or the parameters of the sampling 
operation

 E.g., we could build a large graph with 𝜇 = 𝑓(𝑥; 𝜃) and 𝜎 =
𝑔(𝑥; 𝜃). Then, we can use back-prop to compute 𝛻𝜃𝐽(𝑦)
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Reparametrization

 Reparametrization = stochastic back-propagation = perturbation 
analysis
 Consider a probability distribution 𝑝 𝑦 𝜃, 𝑥 = 𝑝(𝑦|𝑤) where 𝑤 is a 

variable containing both parameters 𝜃 and the input 𝑥

 We rewrite y~𝑝(𝑦|𝑤) as 𝑦 = 𝑓(𝑧;𝑤) where 𝑧 is a source of randomness

 We may the differentiate 𝑦 with respect to 𝑤 using back-propagation 
applied to 𝑓, so long as 𝑓 is continuous and differentiable

 Crucially, 𝑤 must not be a function of 𝑧, and 𝑧 must not be a function of 𝑤
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Example: VAE

[Doersch, “Tutorial on Variational Autoencoders”, 2016]
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Variational Autoencoder (VAE)

 A generative model that uses learned approximate inference and 
can be trained purely with gradient-based method

 To generate a sample from the model, VAE first draws a sample z 
from the code distribution 𝑝𝑚𝑜𝑑𝑒𝑙(𝑧); the sample then is run 
through a differentiable generator network g(z)

 Finally, x is sampled from a distribution 𝑝𝑚𝑜𝑑𝑒𝑙 𝑥; 𝑔 𝑧 =

𝑝𝑚𝑜𝑑𝑒𝑙(𝑥|𝑧)

 However, during training, the approximate inference network (or 
encoder) 𝑞(𝑧|𝑥) is used to obtain z and 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥|𝑧) is viewed as 
a decoder network
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Variational Autoencoder (VAE)

Encoder 𝑞𝜃(𝑧|𝑥) Decoder 𝑝𝜙(𝑥|𝑧)

Data: x

z

z

Reconstruction: ෤𝑥
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Variational Autoencoder (VAE)

𝜇𝑥|𝑧 Σ𝑥|𝑧

𝑧

𝜇𝑧|𝑥 Σ𝑧|𝑥

𝑥

෤𝑥

Encoder network

𝑞𝜙(𝑧|𝑥)

Sample z from 𝑧|𝑥~𝑁(𝜇𝑧|𝑥, Σ𝑧|𝑥)

Decoder network

𝑝𝜃(𝑥|𝑧)

Sample x|z from 𝑥|𝑧~𝑁(𝜇𝑥|𝑧 , Σ𝑥|𝑧)
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Objective Function of VAE

 VAE is trained by maximizing ELBO 𝐿(𝑞) associated with 
any data point 𝑥

 In eq. (1), the first term is the joint log-likelihood of the visible 
and the hidden variables. The second term is the entropy of 
the approximate posterior. When q is chosen to be a Gaussian 
distribution, maximizing L encourages to place high probability 
mass on many z values that could have generated x, rather 
than collapsing to a single point estimate of the most likely 
value

(1)

(2)
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Objective Function of VAE

 VAE is trained by maximizing ELBO 𝐿(𝑞) associated with 
any data point 𝑥

 In eq. (2), the first term can be viewed as the reconstruction 
log-likelihood found in other autoencoders. The second term 
tries to make the approximate posterior distribution q(z|x) and 
the model prior 𝑝𝑚𝑜𝑑𝑒𝑙(𝑧) to be similar

(2)

(1)
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Main Idea of VAE

 Train a parametric encoder that produces the 
parameters of 𝑞

 So long as 𝑧 is a continuous variable, we then back-
propagate through samples of 𝑧 drawn from from
𝑞 𝑧 𝑥 = 𝑞(𝑧; 𝑓 𝑥; 𝜃 ) in order to update 𝜃

 Back-prop through random operation is used in the middle

 Learning then consists sole of maximizing 𝐿 wrt the 
parameters of the encoder and decoder. All of the 
expectations in 𝐿 can be approximated by Monte Carlo 
sampling
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Main Idea of VAE

 The encoder and decoder are feedforward neural networks, 
where the outputs are parameters of Gaussian

 I.e., P(𝑧|𝑥)~𝑁(𝜇𝑧|𝑥, Σ𝑧|𝑥) where 𝜇𝑧|𝑥 and Σ𝑧|𝑥 are outputs of the encoder 

network; P(𝑥|𝑧)~𝑁(𝜇𝑥|𝑧 , Σ𝑥|𝑧) where 𝜇𝑥|𝑧 and Σ𝑥|𝑧 are outputs of the 

decoder network

 Also, 𝑧 is modeled as a simple Gaussian 𝑁(0, 𝐼). This makes 
generating samples easily
 𝑞(𝑧|𝑥) is modeled as similar as possible to 𝑁(0, 𝐼)
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Generating Samples from VAE

𝜇𝑥|𝑧 Σ𝑥|𝑧

𝑧

෤𝑥

Sample z from 𝑧~𝑁(0, 𝐼)

Decoder network

𝑝𝜃(𝑥|𝑧)

Sample x|z from 𝑥|𝑧~𝑁(𝜇𝑥|𝑧 , Σ𝑥|𝑧)
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VAE Example

[Kingma et al., Auto-encoding Variational Bayes, 2014]
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VAE: Discussion

 Strength of VAE
 Principled approach to generative modeling

 Allows inference of 𝑞(𝑧|𝑥) which extracts hidden features

 Simple to implement

 Weakness of VAE
 Approximate inference: i.e., optimizes the lower bound ELBO

 Samples from VAE trained on images tend to be blurry



U Kang 19

Outline

Boltzmann Machines

Restricted Boltzmann Machines

Deep Belief Networks

Deep Boltzmann Machines

Other Boltzmann Machines

Back-Propagation through Random Operations

Directed Generative Nets

VAE

GAN



U Kang 20

Generative Adversarial Network

 Generative Adversarial Network (GAN)
 Another model based on differentiable generator network

 Based on a game theoretic scenario where the generator network 
computes against an adversary

 The generator network produces samples 𝑥 = 𝑔(𝑧; 𝜃 𝑔 ). The adversary 
discriminator network attempts to distinguish samples drawn from the 
training data and samples from the generator

 The discriminator emits a probability value given by 𝑑(𝑥; 𝜃
𝑑
), the 

probability that 𝑥 is a real training example rather than a fake sample
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Generative Adversarial Network

 Generator: try to fool the discriminator

 Discriminator: try to distinguish real or fake images

Discriminator Network

Generator Network

Real or Fake

z (random noise)

Fake

images

Real

images
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Learning in GAN

 Learning is formulated as a zero-sum game, where a function 𝑣(𝜃 𝑔 , 𝜃 𝑑 )
determines the payoff of the discriminator. The generator receives 

− 𝑣(𝜃 𝑔 , 𝜃 𝑑 ) as its own payoff.

 During learning, each player attempts to maximize its payoff, so that at 
convergence 

 𝑔∗ = arg𝑚𝑖𝑛𝑔𝑚𝑎𝑥𝑑 𝑣 𝜃 𝑔 , 𝜃 𝑑 = arg𝑚𝑖𝑛𝑔𝑚𝑎𝑥𝑑 [𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 log 𝑑 𝑥 +

𝐸𝑥~𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 log(1 − 𝑑 𝑥 )]

 Note that the discriminator is a function of 𝜃
𝑑

and the generator is a function of 

𝜃
𝑔

 This formulation enforces the discriminator to learn to correctly classify 
samples as real or fake. Also, the generator is trained to fool the discriminator 
into believing its samples are real

 At convergence, the generator’s samples are indistinguishable from real data, 
and the discriminator outputs ½  everywhere. Then the discriminator may be 
discarded
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Learning in GAN

 Objective function

 𝑔∗ = arg𝑚𝑖𝑛𝑔𝑚𝑎𝑥𝑑 𝑣 𝜃 𝑔 , 𝜃 𝑑 = arg𝑚𝑖𝑛𝑔𝑚𝑎𝑥𝑑 [𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 log 𝑑 𝑥 +

𝐸𝑥~𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 log(1 − 𝑑 𝑥 )]

 Note that the discriminator is a function of 𝜃
𝑑

and the generator is a function of 

𝜃
𝑔

 Algorithm: alternate the following two steps

 Step 1: update 𝜃
𝑑

to maximize the objective 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 log 𝑑 𝑥 +

𝐸𝑥~𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 log(1 − 𝑑 𝑥 ))

 Step 2: update 𝜃
𝑔

to minimize the objective 𝐸𝑥~𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 log(1 − 𝑑 𝑥 )



U Kang 24

Learning in GAN

 Algorithm: alternate the following two steps

 Step 1: update 𝜃
𝑑

to maximize the objective 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 log 𝑑 𝑥 +

𝐸𝑥~𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 log(1 − 𝑑 𝑥 ))

 Step 2: update 𝜃
𝑔

to minimize the objective 𝐸𝑥~𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 log(1 − 𝑑 𝑥 )

 In reality: the Step 2 is reformulated as follows

 Step 2: update 𝜃
𝑔

to maximize the objective 𝐸𝑥~𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 log 𝑑 𝑥

 The reason is that gradient of log(1 − 𝑑 𝑥 ) is small when 𝑑(𝑥) is small, while that 
of log 𝑑 𝑥 is large, so the parameters are updated quickly
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Samples from GAN
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Case Study: CycleGAN

 Given any two unordered image collections X and Y, CycleGAN learns to 
automatically translate an image from one into the other and vice versa

[Zhu and Park et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, 2017]
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Case Study: CycleGAN

 Formulation
 The model includes two mappings G: X -> Y, and F: Y->X

 Two adversarial discriminators: 𝐷𝑋 (to distinguish between images {x} and 
the translated images {F(y)} ), and 𝐷𝑌 (to distinguish between images {y} 
and the translated images {G(x)} )

 The objective function contains two types of loss: adversarial loss for 
matching the distribution of generated images to the data distribution in 
the target domain, and cycle consistency loss to prevent the learned 
mappings G and F from contradicting each other
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Case Study: CycleGAN

 Adversarial loss
 For mapping function G: X -> Y and its discriminator 𝐷𝑌, the objective is

𝐿𝐺𝐴𝑁 𝐺, 𝐷𝑌, 𝑋, 𝑌 = 𝐸𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦) log𝐷𝑌(𝑦) + 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) log(1 − 𝐷𝑌 𝐺 𝑥 )

 where G tries to generate images G(x) that look similar to images from 
domain Y, while 𝐷𝑌 aims to distinguish between translated samples G(x) 
and real samples y

 We want to find the best G and 𝐷𝑌 by optimizing the function 
𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑌𝐿𝐺𝐴𝑁 𝐺,𝐷𝑌, 𝑋, 𝑌

 A similar adversarial loss for the mapping function F: Y -> X and its 
discriminator 𝐷𝑋 is defined as well with the objective function 
𝑚𝑖𝑛𝐹𝑚𝑎𝑥𝐷𝑋𝐿𝐺𝐴𝑁 𝐹, 𝐷𝑋, 𝑌, 𝑋
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Case Study: CycleGAN

 Cycle consistency loss
 The adversarial loss alone cannot guarantee 

that the learned function can map an 
individual input 𝑥𝑖 to a desired output 𝑦𝑖. 
E.g., multiple images in X may be mapped to 
the same image in Y

 CycleGAN introduces cycle-consistency loss
 Forwary cycle consistency: for each image x from 

domain X, the image translation cycle should bring x 
back to the original: i.e., 𝑥 → 𝐺(𝑥) → 𝐹(𝐺(𝑥)) ≈ 𝑥

 Backward cycle consistency: for each image y from 
domain Y, the image translation cycle should bring y 
back to the original: i.e., 𝑦 → 𝐹(𝑦) → 𝐺(𝐹(𝑦)) ≈ 𝑦

 Cycle consistency loss: 𝐿𝑐𝑦𝑐 𝐺, 𝐹 =

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) ∥ 𝐹 𝐺 𝑥 − 𝑥 ∥1 +𝐸𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦) ∥ 𝐺 𝐹 𝑦 − 𝑦 ∥1
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Case Study: CycleGAN

 Full objective function

 Objective: 𝐿 𝐺, 𝐹, 𝐷𝑋, 𝐷𝑌 = 𝐿𝐺𝐴𝑁 𝐺,𝐷𝑌 , 𝑋, 𝑌 +
𝐿𝐺𝐴𝑁 𝐹,𝐷𝑋, 𝑌, 𝑋 + 𝜆𝐿𝑐𝑦𝑐 𝐺, 𝐹

 Goal: solve 𝐺∗, 𝐹∗ = arg𝑚𝑖𝑛𝐺,𝐹𝑚𝑎𝑥𝐷𝑋,𝐷𝑌𝐿 𝐺, 𝐹, 𝐷𝑋, 𝐷𝑌
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Case Study: CycleGAN
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Case Study: CycleGAN
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Case Study: CycleGAN
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GAN: Discussion

 Strength of GAN
 State-of-the-art image samples

 Weakness of GAN
 Unstable to train

 Cannot perform inference queries 𝑞(𝑧|𝑥)
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What you need to know

 Inference as Optimization

 Expectation Maximization

 MAP Inference and Sparse Coding

 Variational Inference and Learning
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Questions?


