
U Kang 1

Advanced Deep Learning

Deep Generative Models-2

U Kang
Seoul National University

U Kang 2

Outline

Boltzmann Machines

Restricted Boltzmann Machines

Deep Belief Networks

Deep Boltzmann Machines

Back-Propagation through Random Operations

Directed Generative Nets

U Kang 3

Motivation

 Typical neural networks implement a deterministic
transformation of some input variables x

 In developing generative models, we often wish to extend neural
networks to implement stochastic transformation of x

 One simple way to do this is to augment the neural network with
extra inputs z that are sampled from simple prob. distribution
such as uniform or Gaussian

 The function f(x,z) will appear stochastic to an observer who does
not have access to z

 Provided that f is continuous and differentiable, we can compute
gradients for training using back-propagation

U Kang 4

Back-Prop Through Sampling

 Consider the operation consisting of drawing samples
𝑦~𝑁(𝜇, 𝜎2)

 It may seem counterintuitive to differentiate y wrt the parameter
of its distribution (𝜇 and 𝜎2)

 However, we can use a reparameterization trick, which is to
rewrite the sampling process as transforming an underlying
random value 𝑧~𝑁(0,1) to obtain a sample from the desired
distribution: 𝑦 = 𝜇 + 𝜎𝑧

 Now we can back-propagate through the sampling operation, by
regarding it as a deterministic operation with an extra input z

 The extra input should be a random variable which is not a
function of any of the parameter we differentiate against y

U Kang 5

Back-Prop Through Sampling

 The result (e.g.,
𝜕𝑦

𝜕𝜇
or

𝜕𝑦

𝜕𝜎
) tells us how an infinitesimal change in 𝜇

or 𝜎 would change the output if we could repeat the sampling
operation again with the same value of z

 Being able to back-propagating through sampling operation
allows us to incorporate it into a larger graph

 We can build elements of the graph on top of the output of the
sampling distribution; we also can build elements of the graph
whose outputs are the inputs or the parameters of the sampling
operation

 E.g., we could build a large graph with 𝜇 = 𝑓(𝑥; 𝜃) and 𝜎 =
𝑔(𝑥; 𝜃). Then, we can use back-prop to compute 𝛻𝜃𝐽(𝑦)

U Kang 6

Reparametrization

 Reparametrization = stochastic back-propagation = perturbation
analysis
 Consider a probability distribution 𝑝 𝑦 𝜃, 𝑥 = 𝑝(𝑦|𝑤) where 𝑤 is a

variable containing both parameters 𝜃 and the input 𝑥

 We rewrite y~𝑝(𝑦|𝑤) as 𝑦 = 𝑓(𝑧;𝑤) where 𝑧 is a source of randomness

 We may the differentiate 𝑦 with respect to 𝑤 using back-propagation
applied to 𝑓, so long as 𝑓 is continuous and differentiable

 Crucially, 𝑤 must not be a function of 𝑧, and 𝑧 must not be a function of 𝑤

U Kang 7

Example: VAE

[Doersch, “Tutorial on Variational Autoencoders”, 2016]

U Kang 8

Outline

Boltzmann Machines

Restricted Boltzmann Machines

Deep Belief Networks

Deep Boltzmann Machines

Other Boltzmann Machines

Back-Propagation through Random Operations

Directed Generative Nets

VAE

GAN

U Kang 9

Variational Autoencoder (VAE)

 A generative model that uses learned approximate inference and
can be trained purely with gradient-based method

 To generate a sample from the model, VAE first draws a sample z
from the code distribution 𝑝𝑚𝑜𝑑𝑒𝑙(𝑧); the sample then is run
through a differentiable generator network g(z)

 Finally, x is sampled from a distribution 𝑝𝑚𝑜𝑑𝑒𝑙 𝑥; 𝑔 𝑧 =

𝑝𝑚𝑜𝑑𝑒𝑙(𝑥|𝑧)

 However, during training, the approximate inference network (or
encoder) 𝑞(𝑧|𝑥) is used to obtain z and 𝑝𝑚𝑜𝑑𝑒𝑙(𝑥|𝑧) is viewed as
a decoder network

U Kang 10

Variational Autoencoder (VAE)

Encoder 𝑞𝜃(𝑧|𝑥) Decoder 𝑝𝜙(𝑥|𝑧)

Data: x

z

z

Reconstruction: 𝑥

U Kang 11

Variational Autoencoder (VAE)

𝜇𝑥|𝑧 Σ𝑥|𝑧

𝑧

𝜇𝑧|𝑥 Σ𝑧|𝑥

𝑥

𝑥

Encoder network

𝑞𝜙(𝑧|𝑥)

Sample z from 𝑧|𝑥~𝑁(𝜇𝑧|𝑥, Σ𝑧|𝑥)

Decoder network

𝑝𝜃(𝑥|𝑧)

Sample x|z from 𝑥|𝑧~𝑁(𝜇𝑥|𝑧 , Σ𝑥|𝑧)

U Kang 12

Objective Function of VAE

 VAE is trained by maximizing ELBO 𝐿(𝑞) associated with
any data point 𝑥

 In eq. (1), the first term is the joint log-likelihood of the visible
and the hidden variables. The second term is the entropy of
the approximate posterior. When q is chosen to be a Gaussian
distribution, maximizing L encourages to place high probability
mass on many z values that could have generated x, rather
than collapsing to a single point estimate of the most likely
value

(1)

(2)

U Kang 13

Objective Function of VAE

 VAE is trained by maximizing ELBO 𝐿(𝑞) associated with
any data point 𝑥

 In eq. (2), the first term can be viewed as the reconstruction
log-likelihood found in other autoencoders. The second term
tries to make the approximate posterior distribution q(z|x) and
the model prior 𝑝𝑚𝑜𝑑𝑒𝑙(𝑧) to be similar

(2)

(1)

U Kang 14

Main Idea of VAE

 Train a parametric encoder that produces the
parameters of 𝑞

 So long as 𝑧 is a continuous variable, we then back-
propagate through samples of 𝑧 drawn from from
𝑞 𝑧 𝑥 = 𝑞(𝑧; 𝑓 𝑥; 𝜃) in order to update 𝜃

 Back-prop through random operation is used in the middle

 Learning then consists sole of maximizing 𝐿 wrt the
parameters of the encoder and decoder. All of the
expectations in 𝐿 can be approximated by Monte Carlo
sampling

U Kang 15

Main Idea of VAE

 The encoder and decoder are feedforward neural networks,
where the outputs are parameters of Gaussian

 I.e., P(𝑧|𝑥)~𝑁(𝜇𝑧|𝑥, Σ𝑧|𝑥) where 𝜇𝑧|𝑥 and Σ𝑧|𝑥 are outputs of the encoder

network; P(𝑥|𝑧)~𝑁(𝜇𝑥|𝑧 , Σ𝑥|𝑧) where 𝜇𝑥|𝑧 and Σ𝑥|𝑧 are outputs of the

decoder network

 Also, 𝑧 is modeled as a simple Gaussian 𝑁(0, 𝐼). This makes
generating samples easily
 𝑞(𝑧|𝑥) is modeled as similar as possible to 𝑁(0, 𝐼)

U Kang 16

Generating Samples from VAE

𝜇𝑥|𝑧 Σ𝑥|𝑧

𝑧

𝑥

Sample z from 𝑧~𝑁(0, 𝐼)

Decoder network

𝑝𝜃(𝑥|𝑧)

Sample x|z from 𝑥|𝑧~𝑁(𝜇𝑥|𝑧 , Σ𝑥|𝑧)

U Kang 17

VAE Example

[Kingma et al., Auto-encoding Variational Bayes, 2014]

U Kang 18

VAE: Discussion

 Strength of VAE
 Principled approach to generative modeling

 Allows inference of 𝑞(𝑧|𝑥) which extracts hidden features

 Simple to implement

 Weakness of VAE
 Approximate inference: i.e., optimizes the lower bound ELBO

 Samples from VAE trained on images tend to be blurry

U Kang 19

Outline

Boltzmann Machines

Restricted Boltzmann Machines

Deep Belief Networks

Deep Boltzmann Machines

Other Boltzmann Machines

Back-Propagation through Random Operations

Directed Generative Nets

VAE

GAN

U Kang 20

Generative Adversarial Network

 Generative Adversarial Network (GAN)
 Another model based on differentiable generator network

 Based on a game theoretic scenario where the generator network
computes against an adversary

 The generator network produces samples 𝑥 = 𝑔(𝑧; 𝜃 𝑔). The adversary
discriminator network attempts to distinguish samples drawn from the
training data and samples from the generator

 The discriminator emits a probability value given by 𝑑(𝑥; 𝜃
𝑑
), the

probability that 𝑥 is a real training example rather than a fake sample

U Kang 21

Generative Adversarial Network

 Generator: try to fool the discriminator

 Discriminator: try to distinguish real or fake images

Discriminator Network

Generator Network

Real or Fake

z (random noise)

Fake

images

Real

images

U Kang 22

Learning in GAN

 Learning is formulated as a zero-sum game, where a function 𝑣(𝜃 𝑔 , 𝜃 𝑑)
determines the payoff of the discriminator. The generator receives

− 𝑣(𝜃 𝑔 , 𝜃 𝑑) as its own payoff.

 During learning, each player attempts to maximize its payoff, so that at
convergence

 𝑔∗ = arg𝑚𝑖𝑛𝑔𝑚𝑎𝑥𝑑 𝑣 𝜃 𝑔 , 𝜃 𝑑 = arg𝑚𝑖𝑛𝑔𝑚𝑎𝑥𝑑 [𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 log 𝑑 𝑥 +

𝐸𝑥~𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 log(1 − 𝑑 𝑥)]

 Note that the discriminator is a function of 𝜃
𝑑

and the generator is a function of

𝜃
𝑔

 This formulation enforces the discriminator to learn to correctly classify
samples as real or fake. Also, the generator is trained to fool the discriminator
into believing its samples are real

 At convergence, the generator’s samples are indistinguishable from real data,
and the discriminator outputs ½ everywhere. Then the discriminator may be
discarded

U Kang 23

Learning in GAN

 Objective function

 𝑔∗ = arg𝑚𝑖𝑛𝑔𝑚𝑎𝑥𝑑 𝑣 𝜃 𝑔 , 𝜃 𝑑 = arg𝑚𝑖𝑛𝑔𝑚𝑎𝑥𝑑 [𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 log 𝑑 𝑥 +

𝐸𝑥~𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 log(1 − 𝑑 𝑥)]

 Note that the discriminator is a function of 𝜃
𝑑

and the generator is a function of

𝜃
𝑔

 Algorithm: alternate the following two steps

 Step 1: update 𝜃
𝑑

to maximize the objective 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 log 𝑑 𝑥 +

𝐸𝑥~𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 log(1 − 𝑑 𝑥))

 Step 2: update 𝜃
𝑔

to minimize the objective 𝐸𝑥~𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 log(1 − 𝑑 𝑥)

U Kang 24

Learning in GAN

 Algorithm: alternate the following two steps

 Step 1: update 𝜃
𝑑

to maximize the objective 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎 log 𝑑 𝑥 +

𝐸𝑥~𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 log(1 − 𝑑 𝑥))

 Step 2: update 𝜃
𝑔

to minimize the objective 𝐸𝑥~𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 log(1 − 𝑑 𝑥)

 In reality: the Step 2 is reformulated as follows

 Step 2: update 𝜃
𝑔

to maximize the objective 𝐸𝑥~𝑝𝑔𝑒𝑛𝑒𝑟𝑎𝑡𝑜𝑟 log 𝑑 𝑥

 The reason is that gradient of log(1 − 𝑑 𝑥) is small when 𝑑(𝑥) is small, while that
of log 𝑑 𝑥 is large, so the parameters are updated quickly

U Kang 25

Samples from GAN

U Kang 26

Case Study: CycleGAN

 Given any two unordered image collections X and Y, CycleGAN learns to
automatically translate an image from one into the other and vice versa

[Zhu and Park et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, 2017]

U Kang 27

Case Study: CycleGAN

 Formulation
 The model includes two mappings G: X -> Y, and F: Y->X

 Two adversarial discriminators: 𝐷𝑋 (to distinguish between images {x} and
the translated images {F(y)}), and 𝐷𝑌 (to distinguish between images {y}
and the translated images {G(x)})

 The objective function contains two types of loss: adversarial loss for
matching the distribution of generated images to the data distribution in
the target domain, and cycle consistency loss to prevent the learned
mappings G and F from contradicting each other

U Kang 28

Case Study: CycleGAN

 Adversarial loss
 For mapping function G: X -> Y and its discriminator 𝐷𝑌, the objective is

𝐿𝐺𝐴𝑁 𝐺, 𝐷𝑌, 𝑋, 𝑌 = 𝐸𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦) log𝐷𝑌(𝑦) + 𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) log(1 − 𝐷𝑌 𝐺 𝑥)

 where G tries to generate images G(x) that look similar to images from
domain Y, while 𝐷𝑌 aims to distinguish between translated samples G(x)
and real samples y

 We want to find the best G and 𝐷𝑌 by optimizing the function
𝑚𝑖𝑛𝐺𝑚𝑎𝑥𝐷𝑌𝐿𝐺𝐴𝑁 𝐺,𝐷𝑌, 𝑋, 𝑌

 A similar adversarial loss for the mapping function F: Y -> X and its
discriminator 𝐷𝑋 is defined as well with the objective function
𝑚𝑖𝑛𝐹𝑚𝑎𝑥𝐷𝑋𝐿𝐺𝐴𝑁 𝐹, 𝐷𝑋, 𝑌, 𝑋

U Kang 29

Case Study: CycleGAN

 Cycle consistency loss
 The adversarial loss alone cannot guarantee

that the learned function can map an
individual input 𝑥𝑖 to a desired output 𝑦𝑖.
E.g., multiple images in X may be mapped to
the same image in Y

 CycleGAN introduces cycle-consistency loss
 Forwary cycle consistency: for each image x from

domain X, the image translation cycle should bring x
back to the original: i.e., 𝑥 → 𝐺(𝑥) → 𝐹(𝐺(𝑥)) ≈ 𝑥

 Backward cycle consistency: for each image y from
domain Y, the image translation cycle should bring y
back to the original: i.e., 𝑦 → 𝐹(𝑦) → 𝐺(𝐹(𝑦)) ≈ 𝑦

 Cycle consistency loss: 𝐿𝑐𝑦𝑐 𝐺, 𝐹 =

𝐸𝑥~𝑝𝑑𝑎𝑡𝑎(𝑥) ∥ 𝐹 𝐺 𝑥 − 𝑥 ∥1 +𝐸𝑦~𝑝𝑑𝑎𝑡𝑎(𝑦) ∥ 𝐺 𝐹 𝑦 − 𝑦 ∥1

U Kang 30

Case Study: CycleGAN

 Full objective function

 Objective: 𝐿 𝐺, 𝐹, 𝐷𝑋, 𝐷𝑌 = 𝐿𝐺𝐴𝑁 𝐺,𝐷𝑌 , 𝑋, 𝑌 +
𝐿𝐺𝐴𝑁 𝐹,𝐷𝑋, 𝑌, 𝑋 + 𝜆𝐿𝑐𝑦𝑐 𝐺, 𝐹

 Goal: solve 𝐺∗, 𝐹∗ = arg𝑚𝑖𝑛𝐺,𝐹𝑚𝑎𝑥𝐷𝑋,𝐷𝑌𝐿 𝐺, 𝐹, 𝐷𝑋, 𝐷𝑌

U Kang 31

Case Study: CycleGAN

U Kang 32

Case Study: CycleGAN

U Kang 33

Case Study: CycleGAN

U Kang 34

GAN: Discussion

 Strength of GAN
 State-of-the-art image samples

 Weakness of GAN
 Unstable to train

 Cannot perform inference queries 𝑞(𝑧|𝑥)

U Kang 35

What you need to know

 Inference as Optimization

 Expectation Maximization

 MAP Inference and Sparse Coding

 Variational Inference and Learning

U Kang 36

Questions?

