

Advanced Deep Learning

Deep Generative Models-2

U Kang Seoul National University

U Kang

Outline

- Boltzmann Machines
- Restricted Boltzmann Machines
- Deep Belief Networks
- Deep Boltzmann Machines
- Back-Propagation through Random Operations
 - Directed Generative Nets

Motivation

- Typical neural networks implement a deterministic transformation of some input variables x
- In developing generative models, we often wish to extend neural networks to implement stochastic transformation of x
- One simple way to do this is to augment the neural network with extra inputs z that are sampled from simple prob. distribution such as uniform or Gaussian
- The function f(x,z) will appear stochastic to an observer who does not have access to z
- Provided that f is continuous and differentiable, we can compute gradients for training using back-propagation

Back-Prop Through Sampling

- Consider the operation consisting of drawing samples $y \sim N(\mu, \sigma^2)$
- It may seem counterintuitive to differentiate y wrt the parameter of its distribution (μ and σ^2)
- However, we can use a reparameterization trick, which is to rewrite the sampling process as transforming an underlying random value $z \sim N(0,1)$ to obtain a sample from the desired distribution: $y = \mu + \sigma z$
- Now we can back-propagate through the sampling operation, by regarding it as a deterministic operation with an extra input z
- The extra input should be a random variable which is not a function of any of the parameter we differentiate against y

Back-Prop Through Sampling

- The result (e.g., $\frac{\partial y}{\partial \mu}$ or $\frac{\partial y}{\partial \sigma}$) tells us how an infinitesimal change in μ or σ would change the output if we could repeat the sampling operation again with the same value of z
- Being able to back-propagating through sampling operation allows us to incorporate it into a larger graph
- We can build elements of the graph on top of the output of the sampling distribution; we also can build elements of the graph whose outputs are the inputs or the parameters of the sampling operation
- E.g., we could build a large graph with $\mu = f(x; \theta)$ and $\sigma = g(x; \theta)$. Then, we can use back-prop to compute $\nabla_{\theta} J(y)$

Reparametrization

- Reparametrization = stochastic back-propagation = perturbation analysis
 - Consider a probability distribution $p(y|\theta, x) = p(y|w)$ where w is a variable containing both parameters θ and the input x
 - We rewrite $y \sim p(y|w)$ as y = f(z; w) where z is a source of randomness
 - We may the differentiate y with respect to w using back-propagation applied to f, so long as f is continuous and differentiable
 - Crucially, w must not be a function of z, and z must not be a function of w

Example: VAE

[Doersch, "Tutorial on Variational Autoencoders", 2016]

U Kang

Outline

- Boltzmann Machines
- Restricted Boltzmann Machines
- Deep Belief Networks
- Deep Boltzmann Machines
- Other Boltzmann Machines
- Mack-Propagation through Random Operations
- 🔷 🔲 Directed Generative Nets
 - VAE

Variational Autoencoder (VAE)

- A generative model that uses learned approximate inference and can be trained purely with gradient-based method
- To generate a sample from the model, VAE first draws a sample z from the code distribution p_{model}(z); the sample then is run through a differentiable generator network g(z)
- Finally, x is sampled from a distribution $p_{model}(x; g(z)) = p_{model}(x|z)$
- However, during training, the approximate inference network (or encoder) q(z|x) is used to obtain z and p_{model}(x|z) is viewed as a decoder network

Variational Autoencoder (VAE)

Variational Autoencoder (VAE)

Objective Function of VAE

 VAE is trained by maximizing ELBO L(q) associated with any data point x

$$\mathcal{L}(q) = \mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z} \mid \boldsymbol{x})} \log p_{\text{model}}(\boldsymbol{z}, \boldsymbol{x}) + \mathcal{H}(q(\boldsymbol{z} \mid \boldsymbol{x}))$$

$$= \mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z} \mid \boldsymbol{x})} \log p_{\text{model}}(\boldsymbol{x} \mid \boldsymbol{z}) - D_{\text{KL}}(q(\boldsymbol{z} \mid \boldsymbol{x}) \mid |p_{\text{model}}(\boldsymbol{z}))$$

$$\leq \log p_{\text{model}}(\boldsymbol{x}).$$
(1)
(2)

In eq. (1), the first term is the joint log-likelihood of the visible and the hidden variables. The second term is the entropy of the approximate posterior. When q is chosen to be a Gaussian distribution, maximizing L encourages to place high probability mass on many z values that could have generated x, rather than collapsing to a single point estimate of the most likely value

Objective Function of VAE

 VAE is trained by maximizing ELBO L(q) associated with any data point x

$$\mathcal{L}(q) = \mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z} \mid \boldsymbol{x})} \log p_{\text{model}}(\boldsymbol{z}, \boldsymbol{x}) + \mathcal{H}(q(\boldsymbol{z} \mid \boldsymbol{x}))$$

$$= \mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z} \mid \boldsymbol{x})} \log p_{\text{model}}(\boldsymbol{x} \mid \boldsymbol{z}) - D_{\text{KL}}(q(\boldsymbol{z} \mid \boldsymbol{x}) \mid |p_{\text{model}}(\boldsymbol{z}))$$

$$\leq \log p_{\text{model}}(\boldsymbol{x}).$$
(1)
(2)

 In eq. (2), the first term can be viewed as the reconstruction log-likelihood found in other autoencoders. The second term tries to make the approximate posterior distribution q(z|x) and the model prior p_{model}(z) to be similar

Main Idea of VAE

- Train a parametric encoder that produces the parameters of q
- So long as z is a continuous variable, we then backpropagate through samples of z drawn from from $q(z|x) = q(z; f(x; \theta))$ in order to update θ
 - Back-prop through random operation is used in the middle
- Learning then consists sole of maximizing L wrt the parameters of the encoder and decoder. All of the expectations in L can be approximated by Monte Carlo sampling

Main Idea of VAE

- The encoder and decoder are feedforward neural networks, where the outputs are parameters of Gaussian
 - □ I.e., $P(z|x) \sim N(\mu_{z|x}, \Sigma_{z|x})$ where $\mu_{z|x}$ and $\Sigma_{z|x}$ are outputs of the encoder network; $P(x|z) \sim N(\mu_{x|z}, \Sigma_{x|z})$ where $\mu_{x|z}$ and $\Sigma_{x|z}$ are outputs of the decoder network
- Also, z is modeled as a simple Gaussian N(0, I). This makes generating samples easily
 - q(z|x) is modeled as similar as possible to N(0, I)

$$\begin{aligned} \mathcal{L}(q) &= \mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z} \mid \boldsymbol{x})} \log p_{\text{model}}(\boldsymbol{z}, \boldsymbol{x}) + \mathcal{H}(q(\boldsymbol{z} \mid \boldsymbol{x})) \\ &= \mathbb{E}_{\boldsymbol{z} \sim q(\boldsymbol{z} \mid \boldsymbol{x})} \log p_{\text{model}}(\boldsymbol{x} \mid \boldsymbol{z}) - D_{\text{KL}}(q(\boldsymbol{z} \mid \boldsymbol{x}) || p_{\text{model}}(\boldsymbol{z})) \\ &\leq \log p_{\text{model}}(\boldsymbol{x}). \end{aligned}$$

Generating Samples from VAE

VAE Example

6

(a) Learned Frey Face manifold

(b) Learned MNIST manifold

[Kingma et al., Auto-encoding Variational Bayes, 2014]

U Kang

VAE: Discussion

Strength of VAE

- Principled approach to generative modeling
- Allows inference of q(z|x) which extracts hidden features
- Simple to implement

Weakness of VAE

- Approximate inference: i.e., optimizes the lower bound ELBO
- Samples from VAE trained on images tend to be blurry

Outline

- Boltzmann Machines
- Restricted Boltzmann Machines
- Deep Belief Networks
- Deep Boltzmann Machines
- Other Boltzmann Machines
- Mack-Propagation through Random Operations
- 🔿 🔲 Directed Generative Nets
 - VAE

Generative Adversarial Network

- Generative Adversarial Network (GAN)
 - Another model based on differentiable generator network
 - Based on a game theoretic scenario where the generator network computes against an adversary
 - □ The generator network produces samples $x = g(z; \theta^{(g)})$. The adversary discriminator network attempts to distinguish samples drawn from the training data and samples from the generator
 - □ The discriminator emits a probability value given by $d(x; \theta^{(d)})$, the probability that x is a real training example rather than a fake sample

- Generator: try to fool the discriminator
- Discriminator: try to distinguish real or fake images

Learning in GAN

- Learning is formulated as a zero-sum game, where a function $v(\theta^{(g)}, \theta^{(d)})$ determines the payoff of the discriminator. The generator receives $-v(\theta^{(g)}, \theta^{(d)})$ as its own payoff.
- During learning, each player attempts to maximize its payoff, so that at convergence
 - $g^* = \arg \min_g \max_d v(\theta^{(g)}, \theta^{(d)}) = \arg \min_g \max_d [E_{x \sim p_{data}} \log d(x) + E_{x \sim p_{generator}} \log(1 d(x))]$
 - Note that the discriminator is a function of $\theta^{(d)}$ and the generator is a function of $\theta^{(g)}$
- This formulation enforces the discriminator to learn to correctly classify samples as real or fake. Also, the generator is trained to fool the discriminator into believing its samples are real
- At convergence, the generator's samples are indistinguishable from real data, and the discriminator outputs ½ everywhere. Then the discriminator may be discarded

Learning in GAN

Objective function

- $g^* = \arg \min_g \max_d v(\theta^{(g)}, \theta^{(d)}) = \arg \min_g \max_d [E_{x \sim p_{data}} \log d(x) + E_{x \sim p_{generator}} \log(1 d(x))]$
- Note that the discriminator is a function of $\theta^{(d)}$ and the generator is a function of $\theta^{(g)}$
- Algorithm: alternate the following two steps
 - Step 1: update $\theta^{(d)}$ to maximize the objective $E_{x \sim p_{data}} \log d(x) + E_{x \sim p_{generator}} \log(1 d(x))$
 - Step 2: update $\theta^{(g)}$ to minimize the objective $E_{x \sim p_{generator}} \log(1 d(x))$

Learning in GAN

- Algorithm: alternate the following two steps
 - Step 1: update $\theta^{(d)}$ to maximize the objective $E_{x \sim p_{data}} \log d(x) + E_{x \sim p_{generator}} \log(1 d(x))$
 - Step 2: update $\theta^{(g)}$ to *minimize* the objective $E_{x \sim p_{generator}} \log(1 d(x))$
- In reality: the Step 2 is reformulated as follows
 - Step 2: update $\theta^{(g)}$ to *maximize* the objective $E_{x \sim p_{generator}} \log d(x)$
 - The reason is that gradient of log(1 d(x)) is small when d(x) is small, while that of log d(x) is large, so the parameters are updated quickly

Graph for log(x)

Samples from GAN

d)

 Given any two unordered image collections X and Y, CycleGAN learns to automatically translate an image from one into the other and vice versa

[Zhu and Park et al., Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, 2017]

Formulation

- □ The model includes two mappings G: X -> Y, and F: Y->X
- Two adversarial discriminators: D_X (to distinguish between images {x} and the translated images {F(y)}), and D_Y (to distinguish between images {y} and the translated images {G(x)})
- The objective function contains two types of loss: *adversarial loss* for matching the distribution of generated images to the data distribution in the target domain, and *cycle consistency loss* to prevent the learned mappings G and F from contradicting each other

U Kang

Adversarial loss

• For mapping function G: X -> Y and its discriminator D_Y , the objective is

 $L_{GAN}(G, D_Y, X, Y) = E_{y \sim p_{data}(y)} \log D_Y(y) + E_{x \sim p_{data}(x)} \log(1 - D_Y(G(x)))$

- where G tries to generate images G(x) that look similar to images from domain Y, while D_Y aims to distinguish between translated samples G(x) and real samples y
- We want to find the best G and D_Y by optimizing the function $min_G max_{D_Y} L_{GAN}(G, D_Y, X, Y)$
- A similar adversarial loss for the mapping function F: Y -> X and its discriminator D_X is defined as well with the objective function $min_Fmax_{D_X}L_{GAN}(F, D_X, Y, X)$

Cycle consistency loss

- The adversarial loss alone cannot guarantee that the learned function can map an individual input x_i to a desired output y_i.
 E.g., multiple images in X may be mapped to the same image in Y
- CycleGAN introduces cycle-consistency loss
 - Forwary cycle consistency: for each image x from domain X, the image translation cycle should bring x back to the original: i.e., $x \to G(x) \to F(G(x)) \approx x$
 - Backward cycle consistency: for each image y from domain Y, the image translation cycle should bring y back to the original: i.e., $y \rightarrow F(y) \rightarrow G(F(y)) \approx y$
- Cycle consistency loss: $L_{cyc}(G, F) = E_{x \sim p_{data}(x)} \parallel F(G(x)) x \parallel_1 + E_{y \sim p_{data}(y)} \parallel G(F(y)) y \parallel_1$

- Full objective function
 - Objective: $L(G, F, D_X, D_Y) = L_{GAN}(G, D_Y, X, Y) + L_{GAN}(F, D_X, Y, X) + \lambda L_{cyc}(G, F)$
 - Goal: solve G^* , $F^* = \arg \min_{G,F} \max_{D_X, D_Y} L(G, F, D_X, D_Y)$

GAN: Discussion

- Strength of GAN
 - State-of-the-art image samples
- Weakness of GAN
 - Unstable to train
 - Cannot perform inference queries q(z|x)

What you need to know

- Inference as Optimization
- Expectation Maximization
- MAP Inference and Sparse Coding
- Variational Inference and Learning

Questions?