DUEID
\‘}'"’3’9
y,

/‘3))(4&

Advanced Deep Learning

Deep Generative Models-2

U Kang
Seoul National University

U Kang

— Outline

1 Boltzmann Machines

Restricted Boltzmann Machines
V] Deep Belief Networks

7] Deep Boltzmann Machines
®» [0 Back-Propagation through Random Operations
[Directed Generative Nets

U Kang 2

Motivation

Typical neural networks implement a deterministic
transformation of some input variables x

In developing generative models, we often wish to extend neural
networks to implement stochastic transformation of x

One simple way to do this is to augment the neural network with
extra inputs z that are sampled from simple prob. distribution
such as uniform or Gaussian

The function f(x,z) will appear stochastic to an observer who does
not have access to z

Provided that f is continuous and differentiable, we can compute
gradients for training using back-propagation

U Kang 3

Back-Prop Through Sampling

Consider the operation consisting of drawing samples
y~N(u,0%)

It may seem counterintuitive to differentiate y wrt the parameter
of its distribution (x and ¢?)

However, we can use a reparameterization trick, which is to
rewrite the sampling process as transforming an underlying
random value z~N(0,1) to obtain a sample from the desired
distribution: y =u + oz

Now we can back-propagate through the sampling operation, by
regarding it as a deterministic operation with an extra input z

The extra input should be a random variable which is not a
function of any of the parameter we differentiate againsty

U Kang 4

k\"L‘["aﬁ_\

~

Sl

g | veRTLux |
“4,|®|"

== Back-Prop Through Sampling

L

&

£]

K

e

dy

G, e e :
m Theresult (e.g., = or y) tells us how an infinitesimal change in
du do H

or o would change the output if we could repeat the sampling
operation again with the same value of z

m Being able to back-propagating through sampling operation
allows us to incorporate it into a larger graph

m We can build elements of the graph on top of the output of the
sampling distribution; we also can build elements of the graph

whose outputs are the inputs or the parameters of the sampling
operation

m E.g., we could build a large graph with u = f(x;0) and 0 =
g(x; 8). Then, we can use back-prop to compute Vg /(y)

U Kang 5

Reparametrization

m Reparametrization = stochastic back-propagation = perturbation
analysis

Q

Consider a probability distribution p(y|0, x) = p(y|w) where w is a
variable containing both parameters 6 and the input x

We rewrite y~p(y|w) as y = f(z; w) where z is a source of randomness

We may the differentiate y with respect to w using back-propagation
applied to f, so long as f is continuous and differentiable

Crucially, w must not be a function of z, and z must not be a function of w

U Kang 6

\%x X n
Example: VAE
- . 9 . ¢
|X - fRI7] ! |X - f)?
1 i 1
f(2) : f(z)
1 : 1
Decoder | 1| CLIN (u(X),%(X))||N(0,1)]| | Decoder
ST T ST RIS (P) ' (P)
KCLIN (pe(X),3(X))[IN(0, 1)) A e

Sample z from N (p(X), ¥(X))

Encoder Encoder Sample ¢ from N (0,])
(@) (@)
X X

[Doersch, “Tutorial on Variational Autoencoders”, 2016]

U Kang

Outline

Boltzmann Machines

o 1

Restricted Boltzmann Machines

Iﬂ

Deep Belief Networks

1<

Deep Boltzmann Machines

Other Boltzmann Machines

&l £

Back-Propagation through Random Operations
® [Directed Generative Nets
» VAE

GAN

U Kang 8

, L([.A»Q
%

Y

¥
ul |v
By
A

== Variational Autoencoder (VAE)

R

m A generative model that uses learned approximate inference and
can be trained purely with gradient-based method

m To generate a sample from the model, VAE first draws a sample z
from the code distribution p,,,,401(2); the sample then is run
through a differentiable generator network g(z)

m Finally, x is sampled from a distribution pmodel(x; g(z)) =

pmodel(xlz)

m However, during training, the approximate inference network (or
encoder) q(z|x) is used to obtain z and p,,,, 4.1 (X|2) is viewed as
a decoder network

U Kang 9

Variational Autoencoder (VAE)

yA Reconstruction: ¥

| |

Encoder gg(z|x) Decoder py (x|z)

| |

Data: x Z

U Kang

Variational Autoencoder (VAE)
X
Sample x|z from x|z~N (py|z) Zx|z) /\
Hx|z z:x|z

Decoder network
pe (x12) T
Z
Sample z from z|x~N (i, Z2(x) /\

Hz|x P

Encoder network \/’
qe(2]x)

X

U Kang 11

4

4
LS
v
S
e

LLL(<<

== 14
{2z

e X
Hce

7
4
dx (L&

=

Objective Function of VAE

m VAE is trained by maximizing ELBO L(q) associated with
any data point x

f’(q) — Ezwq(z x) lﬂg ;ﬁmﬂdel(za :IT) + H(Q(Z ‘ ;ﬂ)) (1)
= Ezmq(z x) log pmodel(® | 2) — Dk1(q(2z | T)||pmodel(z)) (2)
'(_: lﬂgpnmdel(mj'

0 Ineq. (1), the first term is the joint log-likelihood of the visible
and the hidden variables. The second term is the entropy of
the approximate posterior. When q is chosen to be a Gaussian
distribution, maximizing L encourages to place high probability
mass on many z values that could have generated x, rather
than collapsing to a single point estimate of the most likely

value
U Kang 12

& Objective Function of VAE

m VAE is trained by maximizing ELBO L(q) associated with
any data point x

f’(q) — Ezwq(z x) lﬂg ;ﬁmﬂdel(za :IT) + H(Q(Z ‘ ;ﬂ)) (1)

= Ezwq(z x) log pmodel (T | 2) — Dk1(q(z | @)|Pmodel(2)) (2)
< lﬂgpnmdel(mj'

0 Ineq. (2), the first term can be viewed as the reconstruction
log-likelihood found in other autoencoders. The second term
tries to make the approximate posterior distribution g(z|x) and
the model prior p,,,04e1(2) to be similar

U Kang 13

== Main Idea of VAE

m Train a parametric encoder that produces the
parameters of g

m So long as z is a continuous variable, we then back-
propagate through samples of z drawn from from
q(z|x) = q(z; f(x;8)) in order to update 0

0 Back-prop through random operation is used in the middle

m Learning then consists sole of maximizing L wrt the
parameters of the encoder and decoder. All of the
expectations in L can be approximated by Monte Carlo
sampling

U Kang 14

W71y
ST
\,“!"

A Main Idea of VAE

LS

PSS
Yo

m The encoder and decoder are feedforward neural networks,
where the outputs are parameters of Gaussian

o Le., P(z|x)~N(uzx, Zz)x) Where u, and Z,, are outputs of the encoder

network; P(x[2) ~N (U2, Zx|2) Where uy, and Xy, are outputs of the
decoder network

m Also, z is modeled as a simple Gaussian N (0,). This makes
generating samples easily

0 q(z|x) is modeled as similar as possible to N(0,)

’E’(q) — Ezwq(z x) 10gﬁmﬁdel(za :IT) T ,H'(Q(Z ‘ 33))
= E, g(2/2) 108 Pmodel (T | 2) — DkL(q(z | T)|[Pmodel(2))
'(_: lﬂgpnmdel(mj-

U Kang 15

W55

N TR

§,‘7 | VERITEUX | ‘\J\}
\‘.4“; MEA| &
N

Generating Samples from VAE

=1

Sample x|z from x|z~N (py|z) Zx|z) /\

Hx|z Zx|z

Decoder network \/
Po(x|2)

Sample z from z~N (0, I)

U Kang

DAV NNNNAANNNNNSNNNNS
QAIYY G LLLLLLW NN~
QAVINNINRLLLLLLVVYY YN~
QAVVUNINNLEGh GVVVV -~~~
QAVOVHLHINNKVEWWBIVIY W - ——
QOAOOOOHININNMNHEBPBIII D W - - —
QOAOAQODIMHINMMMEEBDIOID D @ - - —
QODOMMNMMMMMN®DIDD DD " —
QOO MMM WMD DD D e e —
QODOMM MMM NN WD DD e e
QOMMME MMM N N0 O W e on o o e —
QOMMM MM " " 000000 o enon o o -
QA% 0% 0P 00000000 n om0~ 0~ i =
N L L LG R R Rl
it oforororororrre oo~
JaAaddddddogororrororrraaaoan N
SdadaddadogrrrrrrTTIIINN
SddddagorrrrrrdrITITITRIRINN
SAddTTTrrrrrr>r>rI™2R2RNN
S B g gl gl il ol ol ol ol ol Sl S S N N NN

VAE Example
T3

TTT

38
B
L
L
HL
H

K

ARAAAAN
AR ERARA

SEEEEs

w
»

BB e R

-

5

e
p

17

(b) Learned MNIST manifold

[Kingma et al., Auto-encoding Variational Bayes, 2014]
U Kang

(a) Learned Frey Face manifold

VAE: Discussion

m Strength of VAE

0 Principled approach to generative modeling

o Allows inference of g(z|x) which extracts hidden features
o Simple to implement

m Weakness of VAE

o Approximate inference: i.e., optimizes the lower bound ELBO
o Samples from VAE trained on images tend to be blurry

U Kang

Outline

Boltzmann Machines

o 1

Restricted Boltzmann Machines

Iﬂ

Deep Belief Networks

1<

Deep Boltzmann Machines

Other Boltzmann Machines

&l £

Back-Propagation through Random Operations
® [Directed Generative Nets

VAE
» GAN

U Kang 19

== Generative Adversarial Network

m Generative Adversarial Network (GAN)
o Another model based on differentiable generator network

0 Based on a game theoretic scenario where the generator network
computes against an adversary

0 The generator network produces samples x = g(z; 9(9)). The adversary
discriminator network attempts to distinguish samples drawn from the
training data and samples from the generator

0 The discriminator emits a probability value given by d(x; G(d)), the
probability that x is a real training example rather than a fake sample

U Kang 20

i Generative Adversarial Network

m Generator: try to fool the discriminator
m Discriminator: try to distinguish real or fake images

Real or Fake

!

Discriminator Network

/\

Fake o I;
o 1 N i
]

Generator Network

A

Real
images

z (random noise)

U Kang 21

Learning in GAN

Learning is formulated as a zero-sum game, where a function v(69), ()
determines the payoff of the discriminator. The generator receives

—v(09), (D) a5 its own payoff.

During learning, each player attempts to maximize its payoff, so that at
convergence

0 g* = argmingmax, v(H(g),H(d)) = argmingmaxy [E logd(x) +

X~Pdata
ExNPgenerator lOg(l o d(.'X'))]

o Note that the discriminator is a function of gD and the generator is a function of
(9)
6

This formulation enforces the discriminator to learn to correctly classify
samples as real or fake. Also, the generator is trained to fool the discriminator
into believing its samples are real

At convergence, the generator’s samples are indistinguishable from real data,
and the discriminator outputs % everywhere. Then the discriminator may be

discarded U Kang s

Learning in GAN

m Objective function

0 g* =argmingmax, v(e(g),e<d)) = argmingmaxy [Ex.p, . logd(x) +
ExNPgenerator 10g(1 _ d(X))]

o Note that the discriminator is a function of ‘¥ and the generator is a function of
(9)
6

m Algorithm: alternate the following two steps

o Step 1: update 8D to maximize the objective E,
Ex~pgenerator 10g(1 o d(X)))

o Step 2: update 89 to minimize the objective Ex~pgenerator log(1 — d(x))

logd(x) +

~Pdata

U Kang 23

Learning in GAN

m Algorithm: alternate the following two steps

o Step 1: update 8D to maximize the objective E,

Ex“’pgenerator lOg(l a d(X)))
0(9)

logd(x) +

~Pdata

o Step 2: update to minimize the objective Ex~pgenerator log(1 — d(x))

m [n reality: the Step 2 is reformulated as follows

o Step 2: update 09 to maximize the objective Ex~pgenerator logd(x)

0 The reason is that gradient of log(1 — d(x)) is small when d(x) is small, while that
of logd(x) is large, so the parameters are updated quickly

Graph for log(1-x) Graph for log(x)

x:-0.43532193 vy 0.156949321 X y
' '
- |-0.4 -0.2 0.2 0.4 0.6 0.8 1 12 14 6|=| -04 -0.2 . . k 12 14 1

02 -0.2

04 04

-0.6
06

-0.8
038

4
‘F&?
%

B

<l

[Zhu and Park et al.,

Case Study: CycleGAN

Given any two unordered image collections X and Y, CycleGAN learns to
automatically translate an image from one into the other and vice versa

Monet Z_ Photos

Zebras T Horses

Summer Z_ Winter

zebra —)horse

par : Iy i :
s > 2 B

: BN 3 ~ DL - s

- =y : e :

: Wi :

s 3 »

: , :

.Y g .
: :

: :

horse —» zebra

S A RN DA T Sy =
VS TR
. A N A
L

Photograph Monet Van Gogh ' Cezanne Ukiyo-e

U Kang

Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks, 2017]

g Case Study: CycleGAN

m Formulation
0 The model includes two mappings G: X ->Y, and F: Y->X

0 Two adversarial discriminators: Dy (to distinguish between images {x} and

the translated images {F(y)}), and Dy (to distinguish between images {y}
and the translated images {G(x)})

o The objective function contains two types of loss: adversarial loss for
matching the distribution of generated images to the data distribution in
the target domain, and cycle consistency loss to prevent the learned
mappings G and F from contradicting each other

a W e
D D [R 7
AX AY o Y ~—" " Y N~—" X Y
G F F
X /—\ Y X Y X Y ('\'('l(‘-('(}llﬁi?&tl'll('\'
_/ cycle-consistency ‘,..S\ > —i.\ """ o loss
F loss =T .& /.

U Kang 27

- Case Study: CycleGAN

m Adversarial loss
o For mapping function G: X -> Y and its discriminator Dy, the objective is

LGAN (G’ DY’X’ Y) = E)”"?data()’) lOg DY(y) + Ex"'pdata(x) log(l o DY(G(x)))

o where G tries to generate images G(x) that look similar to images from

domain Y, while Dy aims to distinguish between translated samples G(x)
and real samplesy

0 We want to find the best G and Dy by optimizing the function
mingmaxp, Lgan (G, Dy, X,Y)

0 A similar adversarial loss for the mapping function F: Y -> X and its
discriminator Dy is defined as well with the objective function
mingmaxp, Lean(F, Dy, Y, X)

U Kang 28

4

V4

&L&L-&

)

\Y

%ﬂé.w‘

LSS

l‘l

g’
}«’f«{&é"

Case Study: CycleGAN

m Cycle consistency loss

o The adversarial loss alone cannot guarantee
that the learned function can map an
individual input x; to a desired output y;.
E.g., multiple images in X may be mapped to
the same image inY

Out G xeconstction F(G(x))
o =
’ (]

.

-~

(&
g™\ k]

dRARAR] B,

o CycleGAN introduces cycle-consistency loss

m Forwary cycle consistency: for each image x from
domain X, the image translation cycle should bring x
back to the original:i.e., x - G(x) = F(G(x)) = x

m Backward cycle consistency: for each image y from
domain Y, the image translation cycle should bring y
back to the original:i.e.,y > F(y) > G(F(y)) = y

o Cycle consistency loss: Ly (G, F) =
Ex~pdata(X) " F(G(X)) —X "1 +E3”"pdata(3’) " G(F(y)) - "1

U Kang 29

m Full objective function

Case Study: CycleGAN

Q ObjeCtiVe: L(G, F, Dx, Dy) — LGAN(G' Dy,X, Y) +

LGAN(FJ DXJ Y,X) + ALcyC(G;F)

0 Goal: solve G*, F* = argming pmaxp, p,L(G,F, Dx, Dy)

Fale
17 w[-
Y
Y cycle-consist
—i‘.\ ol loss
_®
30

Case Study: CycleGAN

Input Output Input Output

LI
,'.I-]'

shoes — edges

31

ARED aa/ Nl
T 4
PEIVE, o

i
SMAALITYY

I\r‘

i

Case Study: CycleGAN

orange — apple

Input Output Input Output

33

. GAN: Discussion

m Strength of GAN

o State-of-the-art image samples

m Weakness of GAN

o Unstable to train
o Cannot perform inference queries g(z|x)

U Kang

34

k

g

LY
LS

= What you need to know

ro< 14

S
%
E-f."';
== 7
<«

1’—(“4(<

m Inference as Optimization
m Expectation Maximization
m MAP Inference and Sparse Coding
m Variational Inference and Learning

U Kang

Questions?

U Kang

