Chemical unit processes

Chemical processes in wastewater treatment

- Usually applied as a unit process for tertiary treatment or for supplementary processes
- Biological vs. chemical processes
 - Biological processes as a major unit for the current wastewater treatment
 - Biological processes less reliable but more cost-effective, benign products
 - Chemical processes more reliable but concern with chemical cost & sludge disposal
 - \rightarrow Biological processes may be more suitable for concentrated treatment systems
 - Wastewater management in the next generation decentralized treatment??
 - Reconsideration of chemical processes needed as significant limitations of biological processes are expected because of..
 - Significant variations in flowrates & loadings at small scale
 - Small-scale facilities cannot be maintained by trained personnel & in a continuous manner

Chemical unit processes

Processes	Application	
Advanced oxidation	Removal of refractory organic compounds	
Chemical coagulation	Chemical destabilization of particles in wastewater to bring about their aggregation during flocculation	
Chemical disinfection	Disinfection with chlorine, chlorine compounds, bromine, and ozone	
	Control of odors	
Chemical neutralization	Control of pH	
Chemical oxidation	Removal of BOD, grease, etc.	
	Removal of ammonium	
	Destruction of microorganisms	
	Control of odors in sewers, pump stations, and treatment plants	
	Removal of resistant organic compounds	

Chemical unit processes

Processes	Application
Chemical precipitation	Enhanced removal of TSS and BOD in primary sedimentation facilities
	Removal of phosphorous
	Removal of ammonium
	Removal of heavy metals
	Physical-chemical treatment
	Corrosion control in sewers due to H ₂ S
Chemical scale control	Control of scaling due to calcium carbonate and related compounds
Chemical stabilization	Stabilization of treated effluents
Ion exchange	Removal of ammonium, heavy metals, total dissolved solids
	Removal of organic compounds

Considerations in chemical processes

• External substances are often added

There is often a net increase in certain dissolved wastewater constituents ex1) addition of coagulants → increase in wastewater TDS
 ex2) addition of chlorine for disinfection: increase in TDS and generation of disinfection byproducts

• Generation of chemical precipitation sludge

- Handling, treatment, and disposal of the chemical sludge requires additional cautions
- Cost of chemicals & sustainability

Chemical coagulation

- Colloidal particles in wastewater typically have a net negative charge and thus, are at <u>stabilized</u> condition
- Coagulation vs. flocculation
 - Coagulation
 - A chemical process to destabilize the particles by changing the surface properties so that particles can stick together when they collide
 - But quite often used as a term that includes mechanisms involved both in chemical destabilization of particles and growth in particle size
 - Flocculation
 - A physical process to create conditions (by gentle mixing) that allow particles to grow in size

http://www.wrights-trainingsite.com/ WT%20coagfloconb.html

Chemical coagulation

http://www.kconsultation.com

http://www.wrights-trainingsite.com/ WT%20coagfloconb.html

Nature of particles

- The electrical double layer
 - Charged particles in water are surrounded by ions of opposite charge
 - A compact layer (Stern layer) + a diffuse layer

Nature of particles

Definition sketch for particle-particle interactions based on the repulsion due to particle surface charge and van der Waals forces of attraction. N = concentration; z = charge.

Nature of particles

• Forces between particles

- Electrical force (repulsion; when the particles are of the same charge)
- van der Waals force (attraction)
- Net energy = electrical force + van der Waals force
- The energy barrier (maximum repulsive force of the net energy) has to be overcome for particles to be attached to each other

• How to reduce the energy barrier?

- Reduce the particle surface charge by attachment of ions of opposite charge
 - Charge neutralization
- Add electrolytes to reduce the electrical double layer thickness
 - Ionic strength \uparrow \rightarrow Compression of electrical double layer

Chemical coagulation

• Mechanisms of particle removal by coagulation

- Charge neutralization
- Compression of electrical double layer
- Inter-particle bridging
- Enmeshment in sweep floc

• Use of polyelectrolytes

- Ions of multiple charge are good at charge neutralization & electrical double layer compression (+1 << +2 << +3)
- Commonly used coagulants: Al³⁺ or Fe³⁺ salts
 (Alum, Al₂(SO₄)₃·14H₂O: most common)

Chemical phosphorus removal

- Two general approaches for P removal
 - Chemical treatment
 - Chemical can be added at various points of the treatment train
 - Biological treatment
 - Modification of secondary treatment (to be discussed later)
- Chemicals used for P removal by precipitation
 - Al³⁺, Fe³⁺, Fe²⁺, Ca²⁺

Addition of chemicals at a single dosing point at various locations for P removal: (a) before primary sedimentation; (b) before and/or after biological treatment; (c) after secondary treatment; (d) chemical addition prior to singlestage filtration; and (e) chemical addition prior to dual-stage filtration

Phosphate precipitation using Al and Fe

• Al or Fe phosphates are insoluble

 $Al^{3+} + H_n PO_4^{3-n} \rightleftharpoons AlPO_4 \downarrow + nH^+$ $Fe^{3+} + H_n PO_4^{3-n} \rightleftharpoons FePO_4 \downarrow + nH^+$

- But this is a very simple representation
- The precipitation mechanism is complicated generally thought to occur by:
 - Phosphate adsorption onto hydrous ferric or aluminum oxide precipitates
 - Incorporation of phosphate into the hydrous oxide structure
 - Formation of mixed cation phosphates (Ca, Mg, Fe, or Al phosphates)
 - Formation of ferric or aluminum phosphate

Phosphate precipitation with calcium

- Precipitate into an insoluble hydroxyapatite $[Ca_{10}(PO_4)_6(OH)_2]$
- Ca²⁺ is usually provided in the form of lime (Ca(OH)₂)
- Note that the lime added to water first reacts with bicarbonate alkalinity to precipitate CaCO₃:

 $Ca(HCO_3)_2 + Ca(OH)_2 \rightleftharpoons 2CaCO_3 \downarrow + 2H_2O$

(reaction for lime softening)

 As more Ca(OH)₂ is added, excess Ca²⁺ will react with the phosphate to precipitate into hydroxyapatite:

 $10Ca^{2+} + 6PO_4^{3-} + 2OH^- \rightleftharpoons Ca_{10}(PO_4)_6(OH)_2 \downarrow$

 The quantity of lime required will depend primarily on the alkalinity of the wastewater

Struvite formation for NH₄⁺ & P removal

• Struvite

- Magnesium ammonium phosphate hexahydrate, MgNH₄PO₄·6H₂O
- Serious problem in the processing of primary sludge and waste activated sludge
- Formation of accumulation of struvite crystals cause problems in pipelines, pumps, etc.
- Controlled struvite precipitation is of recent interest because:
 - Of its value as a fertilizer (nutrients in wastewater into valuable product)
 - Combined removal of NH₄⁺ & P is possible

http://umanitoba.ca

Struvite formation for NH₄⁺ & P removal

• Formation of struvite

 $Mg^{2+} + NH_4^+ + PO_4^{3-} + 6H_2O \rightleftharpoons MgNH_4PO_4 \cdot 6H_2O$

- Molar ratio of 1:1:1 for precipitation
- Solubility product, K_s:

 $K_{s} = \{Mg^{2+}\}\{NH_{4}^{+}\}\{PO_{4}^{3-}\} \approx [Mg^{2+}][NH_{4}^{+}][PO_{4}^{3-}]$

 $pK_s = 13.0$ for struvite

- Struvite dissolution/precipitation is a function of Mg²⁺, NH₄⁺, PO₄³⁻ concentrations
- Various reactions are involved in Mg^{2+} , NH_4^+ , PO_4^{3-}

Reactions involved in struvite chemistry

Reaction	рК
$NH_4^+ \rightleftharpoons NH_3 (aq) + H^+$	9.25
$H_3PO_4 \rightleftharpoons H_2PO_4^- + H^+$	2.1
$H_2PO_4^- \rightleftharpoons HPO_4^{2-} + H^+$	7.2
$HPO_4^{2-} \rightleftharpoons PO_4^{3-} + H^+$	12.3
$MgOH^+ \rightleftharpoons Mg^{2+} + OH^+$	2.56
$MgH_2PO_4^+ \rightleftharpoons Mg^{2+} + H_2PO_4^-$	0.45
$MgHPO_4 \rightleftharpoons Mg^{2+} + HPO_4^{2-}$	2.91
$MgPO_4^- \rightleftharpoons Mg^{2+} + PO_4^{3-}$	4.8
$MgNH_4PO_4 \cdot 6H_2O \rightleftharpoons Mg^{2+} + NH_4^+ + PO_4^{3-} + 6H_2O$	13.0

$$\begin{split} C_{T,Mg} &= [Mg^{2+}] + [MgOH^+] + [MgH_2PO_4^{++}] + [MgHPO_4] + [MgPO_4^{--}] \\ C_{T,NH_3} &= [NH_4^{++}] + [NH_3] \\ C_{T,PO_4} &= [H_3PO_4] + [H_2PO_4^{--}] + [HPO_4^{2--}] + [PO_4^{3--}] + [MgH_2PO_4^{-++}] + [MgHPO_4] + [MgPO_4^{--}] \end{split}$$

Struvite solubility change with pH

Define the "conditional solubility product", P_s as:

$$P_{S} = C_{T,Mg} \cdot C_{T,NH_{3}} \cdot C_{T,PO_{4}} = \frac{K_{S}}{\alpha_{Mg^{2+}} \cdot \alpha_{NH_{4}}^{+} \cdot \alpha_{PO_{4}}^{-3-} \cdot \gamma_{Mg^{2+}} \cdot \gamma_{NH_{4}}^{+} \cdot \gamma_{PO_{4}}^{-3-}}$$

 $\alpha_{Mg^{2+}}, \alpha_{NH_4^{+}}, \alpha_{PO_4^{3-}} = ionization fraction of individual constituents$ ex) $\alpha_{Mg^{2+}} = [Mg^{2+}]/C_{T,Mg}$ $\gamma_{Mg^{2+}}, \gamma_{NH_4^{+}}, \gamma_{PO_4^{3-}} = activity coefficients of individual constituents$

- From the reactions in the previous slide, we see that the α values are a function of pH

Struvite solubility change with pH

Enhancing struvite formation

- So, the struvite formation is a function of
 - рН
 - **Ionic strength**: higher P_s at higher ionic strength \rightarrow unfavorable for precipitation
 - Temperature: reaction constants are functions of temp. generally, P_s increase with temp. to some point (20-35°C) and then decrease

• Enhanced struvite formation for nutrient removal

- Form struvite in controlled settings (reactors)
- Add an excess amount of Mg²⁺ into high pH liquid waste

Chemical precipitation for HM removal

• Common precipitants

- Hydroxide (OH^{-}), sulfide (S^{2-}): most metal salts with these anions are insoluble
- Carbonate (CO_3^{2-}) is sometimes used

• Co-precipitation with phosphorus

 During chemical precipitation of P (using alum, iron, or calcium), heavy metals may co-precipitate with the major precipitant

Chemical precipitation for HM removal

• pH dependence

- Solubility of metal hydroxides and sulfides is a function of pH
- The point of minimum solubility (optimum pH) varies for different metals

Conventional vs. advanced chemical oxidation

• Conventional oxidation processes

- The use of oxidizing agents such as ozone (O_3) , hydrogen peroxide (H_2O_2) , permanganate (MnO_4) , chlorine dioxide (ClO_2) , chlorine $(Cl_2 \text{ or HOCI})$, and oxygen (O_2) to bring about the change in the chemical composition of a compound
- Advanced oxidation processes (AOPs)
 - The <u>free hydroxyl radical (·OH)</u> is used as a strong oxidant to destroy specific organic compounds that cannot be oxidized easily by conventional oxidants
- Typical strength of oxidants
 - $\cdot OH > O_3 > H_2O_2 > HOCI > CIO_2 > MnO_4^- > O_2 > OCI^-$

Conventional chemical oxidation

- Chemical oxidation of organic constituents
 - Oxidation of residual COD

Conventional chemical oxidation

• Chemical oxidation of ammonium

- "Breakpoint chlorination": addition of chlorine (Cl₂ or HOCl) to the point that all ammonium in water can be just converted into N₂ gas
- Overall reaction:

 $3HOCl + 2NH_4^+ \rightleftharpoons N_2 + 3HCl + 2H^+ + 3H_2O$

- Limitations
 - Chemical cost
 - Buildup of acid which consumes alkalinity
 - Build up of TDS
 - Chlorine-containing byproducts
- Usually applied for wastewater that has undergone nitrification
 - Treatment of residual ammonium
 - Disinfection prior to discharge

- Destroy trace constituents that cannot be oxidized completely by conventional oxidants
- Especially useful when potable reuse is considered
- Hydroxyl radical (·OH): very strong oxidant
 - Capable of the complete oxidation of most organic compounds into simple forms (CO₂, H₂O, HCl, etc.)
 - Presence of unpaired electron \rightarrow react rapidly with nearly all electron-rich organic compounds
 - Generally 2nd order reaction (function of concentrations of both ·OH & compound to be oxidized)
 - 2nd order rate constant for ·OH generally in the order of 10⁸~10⁹ L/mole·s
 (3~4 orders of magnitude greater than the rate constants for other oxidants)

• Characterization of the degree of degradation

- Primary degradation: a structural change in the parent compound
- Acceptable degradation: a structural change in the parent compound to the extent that toxicity is reduced
- Ultimate degradation: conversion of organic carbon to inorganic CO₂
- Unacceptable degradation: a structural change in the parent compound resulting in increased toxicity

Reactions by hydroxyl radicals

1. By radical addition (common):

The addition of the hydroxyl radical to an unsaturated organic compound results in the production of a radical organic compound that can be further oxidized into stable products

 $R + \cdot OH \rightarrow ROH \cdot$

2. By hydrogen abstraction (common):

The hydroxyl radical is used to removal a hydrogen atom from organic compounds, forming a radical organic compound. The radical organic compounds react with oxygen to produce a peroxyl radical, which can react with other organic compounds.

 $R - H + \cdot OH \rightarrow R \cdot + H_2O$

3. By electron transfer:

Results in the formation of ions of a higher valence. Oxidation of a monovalent negative ion (-1) will result in the formation of an atom or a free radical.

 $R^n + \cdot OH \to R^{n+1} + OH^-$

4. By radical combination:

Two radicals can combine to form a stable product.

 $\cdot \, OH + \cdot \, OH \ \rightarrow H_2 O_2$

- Processes for advanced oxidation
 - = processes for the production of ·OH

- Ozone/UV

• Photodegradation of O_3 in wet air with UV light

 $O_3 + H_2O + UV(\lambda < 310 \text{ nm}) \rightarrow O_2 + 2 \cdot OH$

• Compounds are degraded by direct ozonation, photolysis, or reaction with the hydroxyl radical

- Ozone/H₂O₂

• Effective for compounds that do not absorb UV or photolysis is not effective because of water quality

 $H_2O_2 + 2O_3 \rightarrow 2 \cdot OH + 3O_2$

$- H_2O_2/UV$

- Requires relatively high H_2O_2 concentration for $\cdot OH$ formation \rightarrow high H_2O_2 concentration in the effluent
- Not good for drinking water treatment, but OK for water reclamation

 $H_2O_2 + UV(\lambda \approx 200 \sim 280 nm) \rightarrow 2 \cdot OH$

• Limitations

Byproduct formation

- Oxidation of Br⁻ in water to form bromate (BrO₃⁻; carcinogen)
- Formation of carboxylic acids, or sometimes halogenated acetic acids (HAAs) as organic byproducts

Impact of carbonate species

• High concentrations of CO₃²⁻ and HCO₃⁻ in wastewater react with ·OH to reduce the efficiency

Impact of pH

- pH determines the concentrations of carbonate species
- H_2O_2/UV process is more effective at very high pH
- Impact of metal ions
 - Metal ions such as Fe²⁺ and Mn²⁺ can consume a significant quantity of chemical oxidants and scavenge ·OH → reduced AOP effectiveness