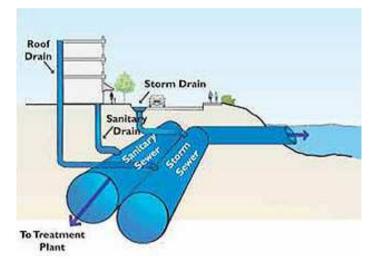
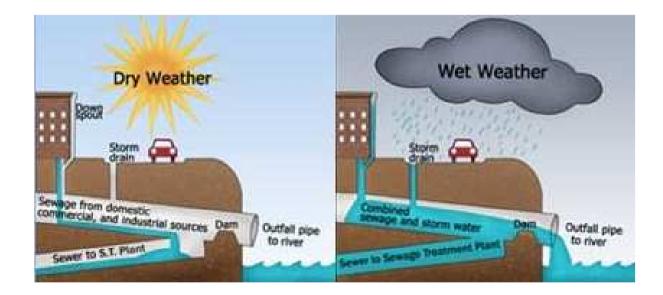

Wastewater treatment processes overview

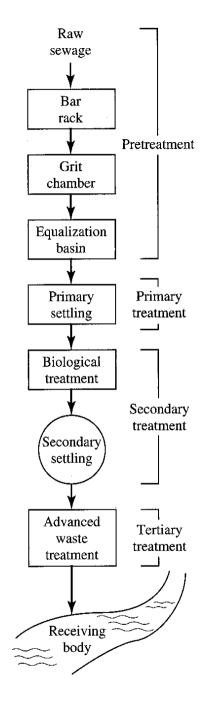
Today's class


- Sewer networks
- Municipal wastewater treatment systems
 - Overview
 - Pretreatment: Screens, Grit chamber, flow equalization
 - Primary treatment
 - Secondary treatment
 - Tertiary (advanced) treatment

Sewer networks

- Combined sewer
 - Sewage and stormwater are collected by a single pipeline
 - Usually for old cities




- Separate sewer
 - Dual pipeline system to collect sewage and stormwater separately
 - New constructions usually adopt separate sewer

Combined sewer overflow (CSO)

- Some diluted wastewater flows directly to the water body during storm events
- Constant CSO in some cases (release of CSO w/o dilution!) due to exceedance of design sewage flowrate

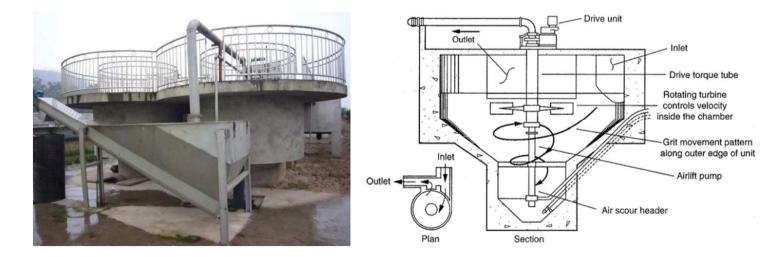
Municipal wastewater treatment systems

- Pretreatment: removes materials that can cause operational problems, equalization optional
- Primary treatment: remove ~60% of SS and ~35% of BOD
- Secondary treatment remove ~85% of BOD and SS; N/P removal
- Advanced (tertiary) treatment more BOD and/or SS removal, N/P removal, refractory organics, or others

Bar racks (screens)

 Purpose: to remove large objects that would damage or foul pumps, valves, and other mechanical equipment Manually-cleaned bar screen

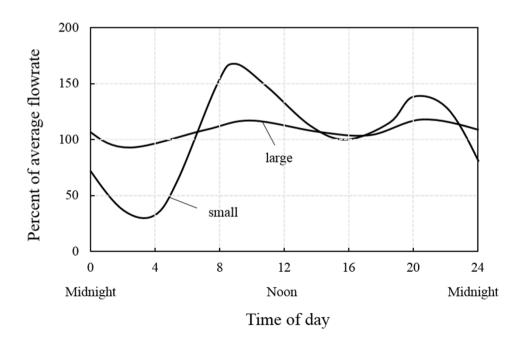
Mechanically-cleaned bar screen



Grit chamber

- Grits: inert dense materials such as sand, broken glass, silt, and pebbles
- Purpose: to remove grits that can abrade pumps and other mechanical devices

Rectangular horizontal flow grit chamber

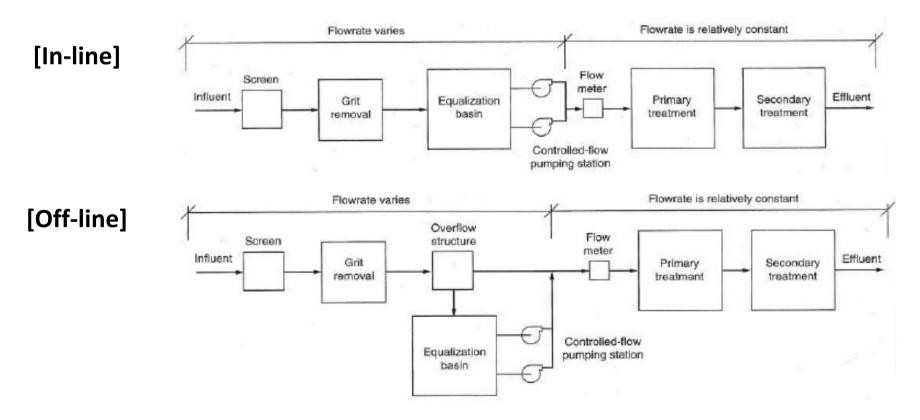


Vortex-type grit chamber

Flow equalization

• Daily variations

- Significant daily variations of flowrate especially for small collections systems
- * note the lag time for wastewater to reach the treatment plant
- Constituent concentration also varies over time


Flow equalization

- Purpose: dampen flowrate variations (and concentration variations) to
 - i) overcome the operational problems caused by flowrate variations
 - ii) improve the performance of the downstream processes
 - iii) reduce the size and cost of downstream treatment facilities

Flow equalization

• Method of application: in-line or off-line

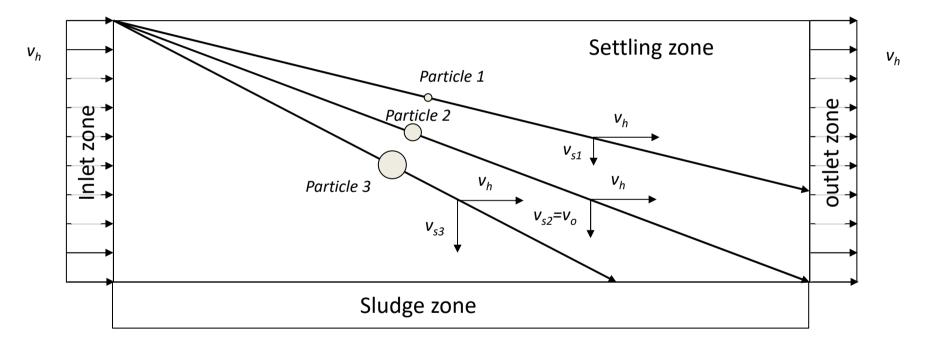
- In-line: can achieve dampening of constituent concentration in addition to the dampening of flowrate
- Off-line: pumping requirements are minimized

Primary sedimentation basins

- Removal of suspended solids by settling
- This removes some BOD as well!
- Removes ~60% of SS and ~35% of BOD
- Sludge settled at the bottom and collected by mechanical devices
- Floating materials such as oil and grease are also removed

Primary sedimentation basins

- Design parameters
 - Retention time: ~2 hr
 - Overflow rate, v_0 : determines particle removal efficiency


$$v_o = \frac{Q}{A_c}$$

Q = water flow rate (m³/s)

 A_c = surface area of the sedimentation basin (m²)

Removal of particles in sedimentation basins

Assume a rectangular sedimentation basin:

particle 1: $v_{s1} < v_o \rightarrow$ partial removal particle 2: $v_{s2} = v_o \rightarrow$ 100% removal particle 3: $v_{s3} > v_o \rightarrow$ 100% removal

Removal of particles in sedimentation basins

From the diagram in the previous slide,

(time for water to flow through the settling zone) [1]

= (settling zone length, L) / (horizontal velocity, v_h)

(time for particle with settling vel. of v_o entering at the top to settle) [2]

= (settling zone height, H) / (settling velocity, v_o)

Equating [1] and [2],
$$\frac{L}{v_h} = \frac{H}{v_o}$$

$$v_o = \frac{Q}{A_c}$$

 $v_o = overflow rate (m/s)$ $A_c = surface area of the basin (m²)$ For particles with settling velocity (v_s) greater than v_o , 100% removed;

For particle with v_s smaller than $v_{o'}$ removal efficiency is $v_s/v_o \times 100$ (%)

Primary sedimentation basins

• Rectangular or circular

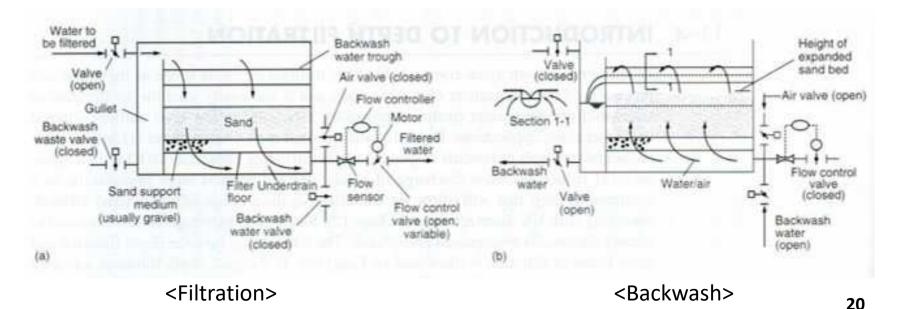
Secondary treatment

- Goal: provide BOD removal beyond what is achieved in primary treatment
 - Removal of soluble BOD
 - Additional removal of SS
- How: by providing favorable conditions for microbial activities
 - Availability of high density of microorganisms
 - Good contact between organisms and wastes
 - Favorable temperature, pH, nutrients, carbon source (food)
 - Oxygen (or other electron acceptors)
 - No or little toxic chemicals present

Secondary treatment - bioreactors

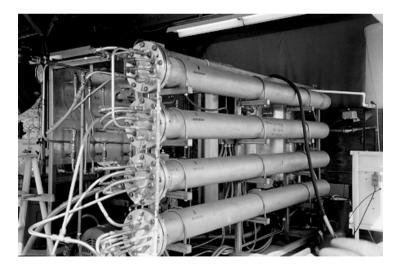
suspended growth

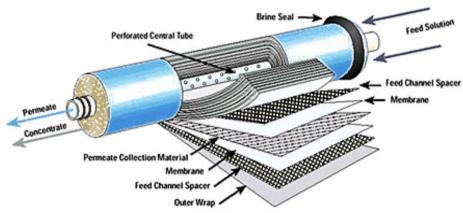
attached growth

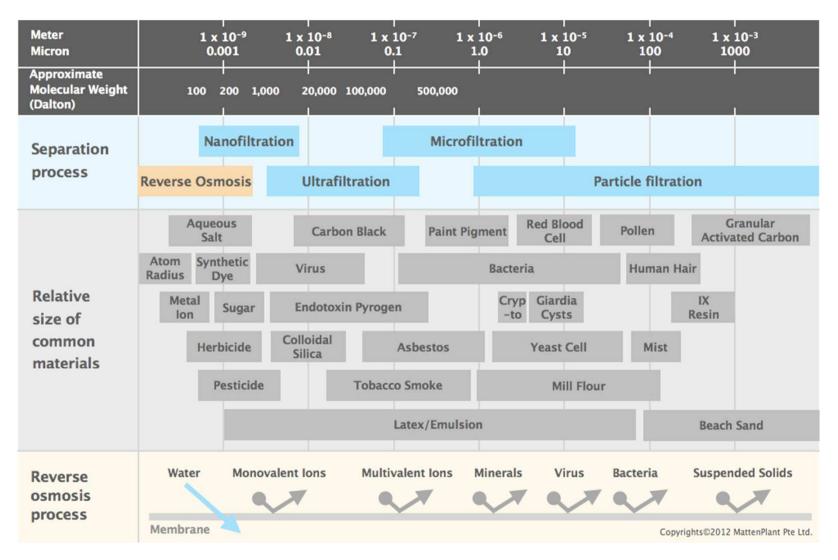

We'll learn further later!

Tertiary (advanced) treatment

- Goal: to improve the quality of the secondary treatment effluent
- Many of the Korean wastewater treatment plants now have advanced treatment process
- Further BOD and SS removal, nutrient removal, TDS removal, or the removal of refractory organic compounds
- Different processes can be used depending on the major target


Tertiary – Granular filtration


- Additional removal of SS
- Sand is most frequently used
- Backwash needed when effluent quality degrades or the filter clogs


Tertiary – Membrane filtration

- Additional removal of SS
- Getting economically viable by advances in membrane techniques

Tertiary – Membrane filtration

Tertiary – Chemical P removal

• Use chemicals (ferric chloride, alum, lime, ...) to precipitate P from secondary effluent

– Using ferric chloride:

 $FeCl_3 + HPO_4^{2-} \rightleftharpoons FePO_4 \downarrow + H^+ + 3Cl^-$

– Using alum

 $Al_2(SO_4)_3 + 2HPO_4^{2-} \rightleftharpoons 2AlPO_4 \downarrow + 2H^+ + 3SO_4^{2-}$

– Using lime:

 $5Ca(OH)_2 + 3HPO_4^{2-} \rightleftharpoons Ca_5(PO_4)_3OH \downarrow + 3H_2O + 6OH^-$

Tertiary – Granular activated carbon adsorption

• Removal of refractory organic compounds

