Water treatment II

Water treatment

- Sedimentation
- Filtration
- Disinfection
- Sludge treatment and disposal

Sedimentation

• Sedimentation basins: (a) rectangular (b) circular

Sedimentation – Design parameters

• Retention time, t_0 : 2-4 hr

$$t_{o} = \frac{V}{Q}$$
 $V = volume \ of \ the \ sedimentation \ basin (m^{3})$ $Q = water \ flow \ rate \ (m^{3}/s)$

- Overflow rate, v_0
 - More directly related to the removal efficiency

$$v_o = \frac{Q}{A_c}$$
 $A_c = surface area of the sedimentation basin (m²) = W (width) x L (length)$

* Large, dense particles \rightarrow greater settling velocity \rightarrow greater v_0 allowed

Filtration

- The effluent of the sedimentation basin still contains particles that are too small to settle
- Filtration is the final step of particle removal from water
- Goal: additional turbidity and pathogen removal
 - Pathogens are small particles (virus: 5-50 nm, bacteria: 0.5-10 μm, protozoa oocysts: 2-20 μm)
- Water flows downward through a bed of granular media, and particles in water are trapped by the media

Filtration - backwash

As particles are removed, filter becomes clogged →
 "head loss" increases → water becomes harder to
 pass the filter & effluent turbidity increases

"Backwash" of filter needed (takes about 10-15 min,

about once per day)

Backwash

- Water flow upward at a high speed to expand the media
- Particles are washed out and collected

Filtration – filter media

- Filter media
 - Single media: sand only
 - Dual media: anthracite coal and sand (most common)
 - Multimedia: anthracite coal, sand, and garnet
- Large, lighter particles on the top and small, heavier particles on the bottom → can use full depth of the filter bed & maintain the layers after backwashing

Material	Grain density (g/cm³)	Effective size (mm)
Anthracite coal	1.6-1.7	1.5-2.5
Sand	2.4-2.6	0.6-0.95
Garnet	4.5	0.4-0.5

Disinfection

- Goal: to inactivate (kill) pathogens
- Disinfection kinetics
 - Chick's law:

$$\frac{dN}{dt} = -kN \longrightarrow ln\left(\frac{N}{N_0}\right) = -kt \qquad N = \text{number of organisms}$$

$$k = \text{first-order reaction constant}$$

 Chick-Watson law: consider the concentration of the disinfectant as a variable

$$ln\left(\frac{N}{N_0}\right) = -k'C^nt$$

$$k = k'C^n$$

$$C = \text{disinfectant concentration, mg/L}$$

$$n = \text{coefficient}$$

The efficiency of disinfection depends on disinfectant concentration (*C*) and contact time (*t*)

Disinfection – reactor design

- Goal: to inactivate (kill) pathogens by 99-99.9% (2-3 log removal)
- What is the appropriate reactor design?

Types of disinfectants

Disinfectant	Advantage	Disadvantage
Chlorine (Cl ₂)	Effective for most microorganismsleaves residual	Forms disinfection byproductsNot effective to some protozoaTaste and odor problem
Chloramine	 More stable residual than chlorine Less disinfection byproduct than chlorine 	Less effective than chlorine
Ozone	 Very powerful Effective for most microorganisms, including protozoa 	Must be produced on-siteForms disinfection byproductsNo residual
UV	 Effective for bacteria & protozoa No disinfection byproducts 	Less effective for some virusesNo residualEffectiveness affected by turbidity

- Disinfectants may react with Br or naturally occurring organic matter to make disinfection byproducts (DBPs)
- Some DBPs are known or possible human carcinogens
- Major DBPs
 - Chlorine disinfection: trihalomethanes (THMs), haloacetic acids (HAAs)

tri halo methanes (THMs)

 Chlorine disinfection: trihalomethanes (THMs), haloacetic acids (HAAs)

halo acetic acids (HAAs)

Ozone disinfection: bromate (BrO₃⁻)

Chloramine (or chlorine) disinfection:
 N-nitrosodimethylamine (NDMA)

Chlorine dioxide disinfection: chlorite (ClO₂⁻)

- Balance needed for disinfectant dose!
 - Disinfectant dose 个, then pathogen kill 个, but disinfection byproduct 个

Does swimming do good or bad for your health??

Chlorine disinfection chemistry

- Chlorine may be added to water as Cl₂, NaOCl, or Ca(OCl)₂
- Large plants mostly use Cl₂
- Cl₂ rapidly reacts with water to form HOCl:

$$Cl_2(g) + H_2O \rightleftharpoons HOCl + H^+ + Cl^-$$

• HOCl is a weak acid that dissociates to form OCl⁻ with a pK_a of 7.54 at 25°C:

$$HOCl \Rightarrow H^+ + OCl^-$$

 Both HOCl and OCl⁻ can kill pathogens, but HOCl is much stronger

Chlorine disinfection chemistry

Q: So, for chlorine disinfection, would you prefer high pH (pH>7.54) or low pH (pH<7.54)?

Factors affecting chlorine disinfection

- Dosage
- Contact time
- Turbidity: the presence of particles (turbidity) hides the pathogen from disinfectant – this is one of the reason why we remove particles!
- Other reactive species: some substances in water can consume chlorine (ex: ammonia)
- pH: effective at pH<7.5
- Water temperature: temperature \uparrow , then pathogen kill rate \uparrow , but chlorine stability \downarrow

Membrane filtration

- Getting more and more popular
- Opening size: microfiltration > ultrafiltration > nanofiltration > reverse osmosis

Sludge treatment & disposal

- Large amount of sludge (=mass of settled solids) is produced during the water treatment because of the addition of coagulants or lime
- Major goal of sludge treatment: removing as much water as possible
- When appropriate sludge treatment is accomplished, the sludge is disposed in the landfill

Sludge in the sedimentation basin http://www.norfolk.gov

Reading assignment

Textbook Ch 10 p. 481-507