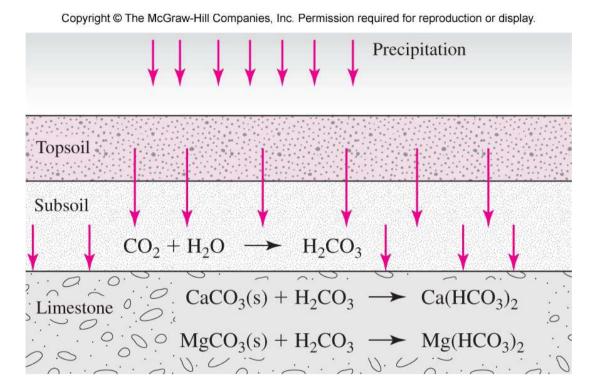
Softening

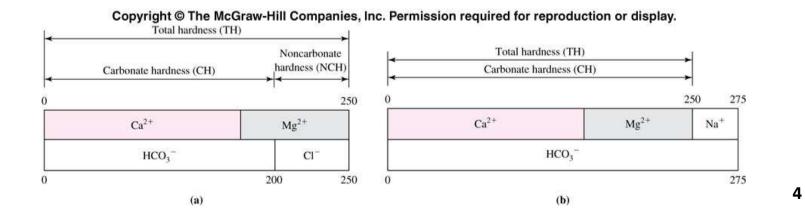
- Goal: to reduce hardness of water
- Hardness
 - The term used to characterize a water that does not lather well, causes a scum, and leaves scales
 - Caused by polyvalent cations (+2, +3, ...)



http://www.watersoftenerbest. blogspot.com

http://www.proenv.com

Formation of hardness


- As rainwater infiltrates, the water gets CO₂ by the respiration of microorganisms
- Recall $CO_2 + H_2O \rightarrow H_2CO_3$
- Carbonic acid (H₂CO₃) dissolves limestone (CaCO₃, MgCO₃)
- Hardness is of concern in limestone areas

- Total hardness (TH)
 - Technically: the sum of all polyvalent cations

$$TH = (Ca^{2+}) + (Mg^{2+}) + (Fe^{3+}) + (Fe^{2+}) + (Ba^{2+}) + \cdots$$
$$= \sum_{i=1}^{n} (X^{m+})_i$$

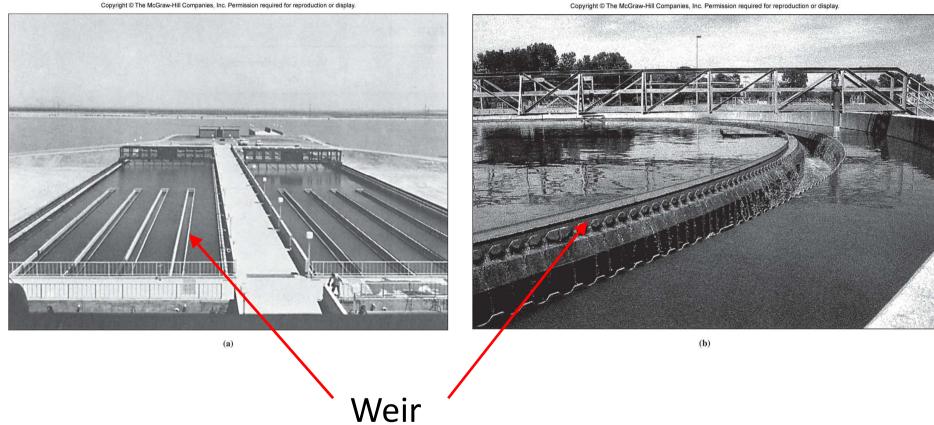
- Practically (most of the time): the sum of Ca²⁺ and Mg²⁺ $TH \cong (Ca^{2+}) + (Mg^{2+})$

- Carbonate and noncarbonate hardness
 - Total hardness (TH) is divided into carbonate (CH) and noncarbonate (NCH) hardness (TH = CH + NCH)
 - Carbonate hardness: the maximum amount of hardness that can be associated with carbonates (HCO₃⁻ and CO₃²⁻)
 - When **TH > Alk** (≈ [**HCO**₃⁻] + 2[CO₃²⁻]), **CH = Alk**, NCH = TH CH
 - When $\mathbf{TH} \leq \mathbf{Alk}$, $\mathbf{CH} = \mathbf{TH}$, $\mathbf{NCH} = \mathbf{0}$

- Units
 - eq/L or meq/L
 - mg/L as CaCO₃ (recall alkalinity unit)
 - Unit conversion: $(mg/L \text{ as } CaCO_3) = 50 \text{ x} (meq/L)$ (as CaCO₃ is 50 mg/meq)

Term	Concentration range (mg/L as CaCO ₃)
Soft	<17.1
Slightly hard	17.1-60
Moderately hard	60-120
Hard	120-180
Very hard	>180

Q: A sample of water having a pH of 7.0 has the following concentration of ions. Calculate the total hardness and the carbonate hardness of the water sample.


lon	Concentration (mg/L)	lon	Concentration (mg/L)
Ca ²⁺	40	HCO ₃ ⁻	110
Mg ²⁺	10	SO ₄ ²⁻	67.2
Na⁺	11.8	Cl⁻	11
K ⁺	7.0		

Lime-soda softening

- Addition of lime (Ca(OH)₂) and soda ash (Na₂CO₃)
- Precipitates Ca²⁺ and Mg²⁺ using following reactions: $Ca^{2+} + CO_3^{2-} \rightleftharpoons CaCO_3(s)$ $Mg^{2+} + 20H^- \rightleftharpoons Mg(0H)_2(s)$
- Target on Ca²⁺ and carbonate hardness first, leaving as much Mg²⁺ and noncarbonate hardness as possible
 - pH of water should be ~10.3 for Ca²⁺ precipitation and ~11 for Mg²⁺ precipitation
 - Have to provide CO_3^{2-} for noncarbonate hardness

Sedimentation

• Sedimentation basins: (a) rectangular (b) circular

Copyright © The McGraw-Hill Companies, Inc. Permission required for reproduction or display.

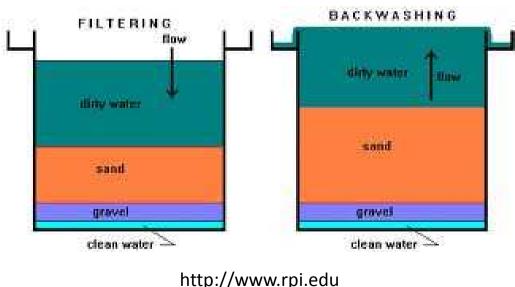
Sedimentation

- Design parameters
 - Retention time, t_0 : 2-4 hr

 $t_o = rac{V}{Q}$ V = volume of the sedimentation basin (m³)Q = water flow rate (m³/s)

- Overflow rate, v_0 : directly related to the removal efficiency

 $v_o = \frac{Q}{A_c}$ $A_c = surface area of the sedimentation basin (m²)$ = W (width) x L (length)


* Large, dense particles \rightarrow greater settling velocity \rightarrow greater v_0 allowed

Filtration

- The effluent of the sedimentation basin still contains particles that are too small to settle
- Filtration is the final step of particle removal from water
- Goal: additional turbidity and pathogen removal
 - Pathogens are small particles (virus: 5-50 nm, bacteria: 0.5-10 μm, protozoa oocysts: 2-20 μm)
- Water flows downward through a bed of granular media, and particles in water are trapped by the media

Filtration

- As particles are removed, filter becomes clogged → "head loss" increases → water becomes harder to pass the filter & effluent turbidity increases
- "Backwash" of filter needed (takes about 10-15 min, about once per day)
- Backwash
 - Water flow upward at a high speed to expand the media
 - Particles are washed out and collected

Filtration

- Filter media
 - Single media: sand only
 - Dual media: anthracite coal and sand (most common)
 - Multimedia: anthracite coal, sand, and garnet
- Large, lighter particles on the top and small, heavier particles on the bottom → can use full depth of the filter bed & maintain the layers after backwashing

Material	Grain density (g/cm ³)	Effective size (mm)
Anthracite coal	1.6-1.7	1.5-2.5
Sand	2.4-2.6	0.6-0.95
Garnet	4.5	0.4-0.5

Reading assignment

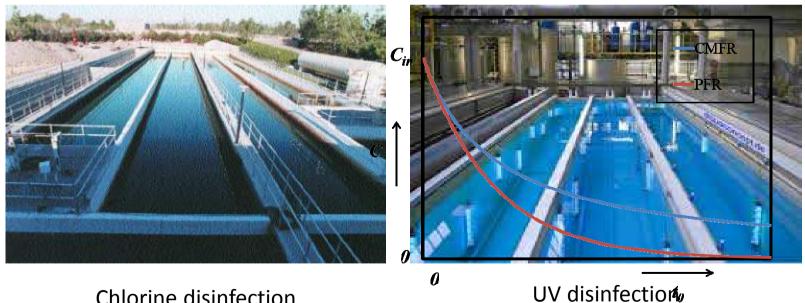
Textbook Ch 10 p. 470-488

Disinfection

- Goal: to inactivate (kill) pathogens
- Disinfection kinetics
 - Chick's law:

$$\frac{dN}{dt} = -kN \longrightarrow ln\left(\frac{N}{N_0}\right) = -kt \qquad N = \text{number of organisms} \\ k = \text{first-order reaction constant}$$

 Chick-Watson law: consider the concentration of the disinfectant as a variable

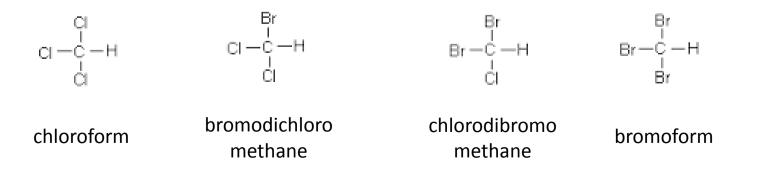

$$ln\left(\frac{N}{N_0}\right) = -k'C^nt$$

k = k'Cⁿ
C = disinfectant concentration, mg/L
n = coefficient

The efficiency of disinfection depends on disinfectant concentration (C) and contact time (t)

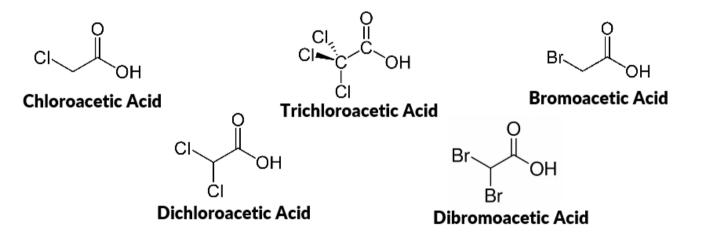
Disinfection

- Goal: to inactivate (kill) pathogens by 99-99.9% (2-3 log removal)
- What is the appropriate reactor design?

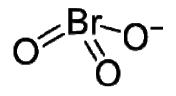

Chlorine disinfection

Types of disinfectants

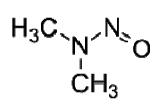
Disinfectant	Advantage	Disadvantage
Chlorine (Cl ₂)	 Effective for most microorganisms leaves residual 	 Forms disinfection byproducts Not effective to some protozoa Taste and odor problem
Chloramine	 More stable residual than chlorine Less disinfection byproduct than chlorine 	Less effective than chlorine
Ozone	 Very powerful Effective for most microorganisms, including protozoa 	 Must be produced on-site Forms disinfection byproducts No residual
UV	 Effective for bacteria & protozoa No disinfection byproducts 	 Less effective for some viruses No residual Effectiveness affected by turbidity

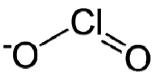

- Disinfectants may react with Br⁻ or naturally occurring organic matter to make disinfection byproducts (DBPs)
- Some DBPs are known or possible human carcinogens
- Major DBPs
 - Chlorine disinfection: trihalomethanes (THMs), haloacetic acids (HAAs)

tri halo methanes (THMs)



Chlorine disinfection: trihalomethanes (THMs), haloacetic acids (HAAs)


halo acetic acids (HAAs)


Ozone disinfection: bromate (BrO₃⁻)

Chloramine (or chlorine) disinfection:
 N-nitrosodimethylamine (NDMA)

Chlorine dioxide disinfection: chlorite (ClO₂⁻)

- Balance needed for disinfectant dose!
 - Disinfectant dose 个, then pathogen kill 个, but disinfection byproduct 个

Does swimming do good or bad for your health??

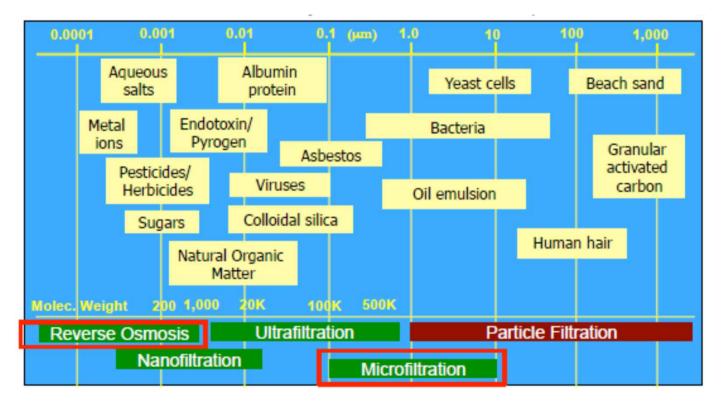
Chlorine disinfection chemistry

- Chlorine may be added to water as Cl₂, NaOCl, or Ca(OCl)₂
- Large plants mostly use Cl₂
- Cl_2 rapidly reacts with water to form HOCI: $Cl_2(g) + H_2O \rightleftharpoons HOCl + H^+ + Cl^-$
- HOCl is a weak acid that dissociates to form OCl⁻ with a pK_a of 7.54 at 25°C:

 $HOCl \rightleftharpoons H^+ + OCl^-$

 Both HOCl and OCl⁻ can kill pathogens, but HOCl is much stronger

Chlorine disinfection chemistry


Q: So, for chlorine disinfection, would you prefer high pH (pH>7.54) or low pH (pH<7.54)?

Chlorine disinfection

- Factors affecting chlorine disinfection
 - Dosage
 - Contact time
 - Turbidity: the presence of particles (turbidity) hides the pathogen from disinfectant – this is one of the reason why we remove particles!
 - Other reactive species: some substances in water can consume chlorine (ex: ammonia)
 - pH: effective at pH<7.5
 - Water temperature: temperature \uparrow , then pathogen kill rate \uparrow , but chlorine stability \downarrow

Membrane processes

- Getting more and more popular
- Opening size: microfiltration > ultrafiltration > nanofiltration > reverse osmosis

Sludge treatment & disposal

- Large amount of sludge (=mass of settled solids) is produced during the water treatment because of the addition of coagulants or lime
- Major goal of sludge treatment: removing as much water as possible
- When appropriate sludge treatment is accomplished, the sludge is disposed in the landfill

Sludge in the sedimentation basin http://www.norfolk.gov

Reading assignment

Textbook Ch 10 p. 488-507