
U Kang 1

Large Scale Data Analysis Using
Deep Learning

Optimization for Training Deep
Models - 2

U Kang
Seoul National University

U Kang 2

In This Lecture
 Optimization strategies and meta-algorithms

 Batch Normalization
 Coordinate Descent
 Polyak Averaging
 Supervised Pretraining
 Designing Models to Aid Optimization
 Continuation Methods and Curriculum Learning

U Kang 3

Batch Normalization
 A method of adaptive reparameterization, motivated by the

difficulty of training very deep models
 Gradient tells how to update each parameter in a layer, under

the assumption that the other layers do not change
 In practice, we update all of the layers simultaneously; thus,

unexpected results can happen because many functions
composed together are changed simultaneously, using updates
that were computed under the assumption that the other
functions remain constant

U Kang 4

Batch Normalization
 E.g., a deep neural network with only one unit per layer and no

activation function: �𝑦𝑦 = 𝑥𝑥𝑤𝑤1𝑤𝑤2𝑤𝑤3…𝑤𝑤𝑙𝑙. Hidden layer ℎ𝑖𝑖 = ℎ𝑖𝑖−1𝑤𝑤𝑖𝑖
 Suppose we compute gradient 𝑔𝑔 = 𝛻𝛻𝑤𝑤 �𝑦𝑦. What would happen for a

gradient descent update 𝑤𝑤 ← 𝑤𝑤 − 𝜖𝜖𝑔𝑔
 First-order Tayler approximation of �𝑦𝑦 predicts that �𝑦𝑦 will decrease by
𝜖𝜖𝑔𝑔𝑇𝑇𝑔𝑔; thus, if we want to decrease �𝑦𝑦 by .1, then we can set 𝜖𝜖 to .1

𝑔𝑔𝑇𝑇𝑔𝑔
 However, the actual update will include second-order and third-order

effects, on up to effects of order l, since all parameters are changed
simultaneously
 �𝑦𝑦 = 𝑥𝑥 𝑤𝑤1 − 𝜖𝜖𝑔𝑔1 𝑤𝑤2 − 𝜖𝜖𝑔𝑔2 … (𝑤𝑤𝑙𝑙 − 𝜖𝜖𝑔𝑔𝑙𝑙)

 An example of a second-order term is 𝜖𝜖2𝑔𝑔1𝑔𝑔2 ∏𝑖𝑖=3
𝑙𝑙 𝑤𝑤𝑖𝑖. This term

might be very small or very large based on 𝑤𝑤𝑖𝑖
 This makes it very hard to choose an appropriate learning rate,

because the effects of an update to a parameter depends on other
parameters

U Kang 5

Batch Normalization
 Batch normalization helps in

 Reducing the problem of coordinating updates across many layers.
 Mitigate ‘exploding gradient’ or ‘vanishing gradient’ problem
 Improves gradient flow through the network
 Allows higher learning rate
 Reduces the strong dependence on initialization
 Acts as a regularization method: processing of 𝑥𝑥𝑖𝑖 depends on other 𝑥𝑥𝑗𝑗s;

reduces the need for dropout

 Batch normalization can be applied to any input or hidden layer

U Kang 6

Batch Normalization
 Consider a batch of activations at a layer. Batch normalization

applies the following transformation for each dimension

 �𝑥𝑥(𝑘𝑘) = 𝑥𝑥(𝑘𝑘)−𝐸𝐸[𝑥𝑥 𝑘𝑘]

𝑉𝑉𝑉𝑉𝑉𝑉[𝑥𝑥 𝑘𝑘]

 This makes 𝑥𝑥(𝑘𝑘) unit Gaussian if 𝑥𝑥(𝑘𝑘) is Gaussian
 Note that this is a differentiable function of 𝑥𝑥(𝑘𝑘)

 Batch Normalization (BN) is inserted after Fully Connected layer,
and before nonlinearity

FC BN tanh FC BN tanh

But, we might give too small values to tanh if we stop at this point

U Kang 7

Batch Normalization
 Scaling and shifting the unit Gaussian

 Normalize: �𝑥𝑥(𝑘𝑘) = 𝑥𝑥(𝑘𝑘)−𝐸𝐸[𝑥𝑥 𝑘𝑘]

𝑉𝑉𝑉𝑉𝑉𝑉[𝑥𝑥 𝑘𝑘]

 Then, allow the network to change the range if needed:
𝑦𝑦(𝑘𝑘) = 𝛾𝛾(𝑘𝑘) �𝑥𝑥(𝑘𝑘) + 𝛽𝛽(𝑘𝑘)

 Important point: the network can learn

𝛾𝛾(𝑘𝑘) = 𝑉𝑉𝑉𝑉𝑉𝑉[𝑥𝑥 𝑘𝑘], 𝛽𝛽(𝑘𝑘) = 𝐸𝐸[𝑥𝑥 𝑘𝑘]
to recover the identity mapping

 𝛾𝛾(𝑘𝑘) and 𝛽𝛽(𝑘𝑘) are parameters learned through back propagation

U Kang 8

Batch Normalization: Full Version
 Input: a mini-batch B={𝑥𝑥1, … , 𝑥𝑥𝑚𝑚}
 Output: batch-normalized input: {𝑦𝑦𝑖𝑖 = 𝐵𝐵𝐵𝐵𝛾𝛾,𝛽𝛽(𝑥𝑥𝑖𝑖)}

 𝜇𝜇𝐵𝐵 = 1
𝑚𝑚
∑𝑖𝑖=1𝑚𝑚 𝑥𝑥𝑖𝑖

 𝜎𝜎𝐵𝐵2 = 1
𝑚𝑚
∑𝑖𝑖=1𝑚𝑚 (𝑥𝑥𝑖𝑖 − 𝜇𝜇𝐵𝐵)2

 �𝑥𝑥𝑖𝑖 = 𝑥𝑥𝑖𝑖−𝜇𝜇𝐵𝐵
𝜎𝜎𝐵𝐵2+𝜖𝜖

 𝑦𝑦𝑖𝑖 = 𝛾𝛾 �𝑥𝑥𝑖𝑖 + 𝛽𝛽

 At test time, 𝜇𝜇 and 𝜎𝜎 are replaced by running averages that were
collected during training time

U Kang 9

Coordinate Descent
 Coordinate descent

 Arrive at a (local) minimum by minimizing f(x) w.r.t. a single variable 𝑥𝑥𝑖𝑖,
then another variable 𝑥𝑥𝑗𝑗 and so on, repeatedly cycling through all variables

 Block coordinate descent: minimizing with respect to a subset of
the variables simultaneously

 Coordinate descent is useful when the different variables can be
clearly separated into groups that play relatively isolated roles, or
optimization wrt one group of variables is significantly more
efficient than optimization wrt all of the variables

U Kang 10

Coordinate Descent
 Example: sparse coding

 𝐽𝐽 𝐻𝐻,𝑊𝑊 = ∑𝑖𝑖,𝑗𝑗 |𝐻𝐻𝑖𝑖,𝑗𝑗| + ∑𝑖𝑖,𝑗𝑗(𝑋𝑋 −𝑊𝑊𝑇𝑇𝐻𝐻)𝑖𝑖,𝑗𝑗2

 Goal: find W and H so that a weight matrix W (dictionary) can decode H
(code representation) to reconstruct the training set X

 The function J is not convex. However, minimizing J with respect to either
one of W and H is convex

 Thus, block coordinate descent gives us an optimization strategy (alternate
between optimizing W with H fixed, then H with W fixed)

U Kang 11

Polyak Averaging
 Average together several points in the parameter space visited by an

optimization algorithm
 If t iterations of gradient descent visit 𝜃𝜃(1), … ,𝜃𝜃(𝑡𝑡), then the output of

Polyak averaging is �𝜃𝜃(𝑡𝑡) = 1
𝑡𝑡
∑𝑖𝑖 𝜃𝜃(𝑖𝑖)

 On some problem classes (e.g., gradient descent on convex problem),
this approach has strong convergence guarantees

 On neural networks, this approach is more heuristic, but performs well
in practice

 Main idea: optimization may leap back and forth across a valley several
times without visiting the bottom of the valley; average of the previous
parameters should be close to the bottom of the valley

 In non-convex problems, the previous points may belong to many
different regions; thus, in this case exponentially decaying running
average is useful: �𝜃𝜃(𝑡𝑡) = 𝛼𝛼 �𝜃𝜃(𝑡𝑡−1) + (1 − 𝛼𝛼)𝜃𝜃(𝑡𝑡)

U Kang 12

Supervised Pretraining
 Training a complex model is difficult
 Pretraining: training simple models on simple tasks before

confronting the challenge of training the desired model to
perform the desired task

 Greedy algorithms are used for pretraining
 Greedy algorithms break a problem into many components, then solve for

the optimal version of each component in isolation
 Combining the individually optimal components is not guaranteed to yield

an optimal complete solution
 However, greedy algorithms are efficient, and the quality of a greedy

solution is often acceptable if not optimal
 Greedy algorithms can be followed a find-tuning stage where a joint

optimization algorithm searches for an optimal solution to the full problem
 Initializing the joint optimization algorithm with a greedy solution can greatly speed up

learning and improve the quality of the solution

U Kang 13

Supervised Pretraining
 Greedy supervised pretraining

Why does it work?
It gives better guidance to the intermediate levels of a deep hierarchy

U Kang 14

Design Models to Aid Optimization
 To improve optimization, the best strategy is not always to

improve the optimization algorithm; a better way is to design
models easier to optimize

 Most of the advances in neural network learning over the past 30
years have been obtained by changing the model family rather
than changing the optimization procedure
 SGD with momentum, which was used in the 1980s, remains one of the

state of the art methods for modern neural network

 Examples
 Mitigate vanishing gradient problem by

 Using ReLU activation function
 Skip connections between layers

U Kang 15

Continuation Methods and Curriculum
Learning

 Continuation methods
 A family of strategies to make optimization easier by choosing initial points

to ensure that local optimization spends most of its time in well-behaved
regions of space

 Idea: construct a series of objective function over the same parameters: to
minimize 𝐽𝐽(𝜃𝜃), we construct new cost functions {𝐽𝐽 0 , … , 𝐽𝐽 𝑛𝑛 }

 These functions are designed to be increasingly difficult, where 𝐽𝐽 0 is the
easiest
 𝐽𝐽 𝑖𝑖 is easier than 𝐽𝐽 𝑖𝑖+1 when 𝐽𝐽 𝑖𝑖 is well behaved over more of 𝜃𝜃 space

U Kang 16

Continuation Methods and Curriculum
Learning

 Continuation methods
 Continuation methods were designed with the goal of overcoming the

challenge of local minima: reach a global minimum despite the presence of
many local minima

 To do so, these continuation methods construct easier cost functions by
“blurring” the original cost function, which can be done by approximating

𝐽𝐽 𝑖𝑖 𝜃𝜃 = 𝐸𝐸
𝜃𝜃′~𝑁𝑁(𝜃𝜃,𝜎𝜎(𝑖𝑖)2)

𝐽𝐽(𝜃𝜃′) via sampling

 Intuition: some non-convex functions become approximately convex when blurred

 In many cases, the blurring preserves enough information about the
location of a global minimum which can be found by solving progressively
less blurred versions of the problem
 𝜎𝜎(𝑖𝑖) decreases as i increases

U Kang 17

Continuation Methods and Curriculum
Learning

 Curriculum learning (or shaping)
 A continuation method
 Idea: Plan a learning process to begin by learning simple concepts, and

progress to learning more complex concepts that depend on these simpler
concepts
 This is useful for animal training as well as machine learning

 Earlier 𝐽𝐽(𝑖𝑖) are made easier by increasing the influence of simpler examples
(either by assigning their contributions to the cost function larger
coefficients, or by sampling them more frequently)
 How to distinguish simple and difficult examples? Apply a well-known algorithm; correct

high-confidence examples would become simple examples, and wrong or low-confidence
examples would be difficult examples

 Successful in natural language processing and computer vision

U Kang 18

What you need to know

 Optimization strategies and meta-algorithms
 Batch Normalization
 Coordinate Descent
 Polyak Averaging
 Supervised Pretraining
 Designing Models to Aid Optimization
 Continuation Methods and Curriculum Learning

U Kang 19

Questions?

	슬라이드 번호 1
	In This Lecture
	Batch Normalization
	Batch Normalization
	Batch Normalization
	Batch Normalization
	Batch Normalization
	Batch Normalization: Full Version
	Coordinate Descent
	Coordinate Descent
	Polyak Averaging
	Supervised Pretraining
	Supervised Pretraining
	Design Models to Aid Optimization
	Continuation Methods and Curriculum Learning
	Continuation Methods and Curriculum Learning
	Continuation Methods and Curriculum Learning
	What you need to know
	슬라이드 번호 19

